From 80c5d1841a5ea1d302f9b6865a6f1539d9361524 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Thu, 4 Sep 2008 11:56:03 +0000 Subject: [PATCH] ... --- .../library/formal_topology/concrete_spaces.ma | 16 ++++++++++------ 1 file changed, 10 insertions(+), 6 deletions(-) diff --git a/helm/software/matita/library/formal_topology/concrete_spaces.ma b/helm/software/matita/library/formal_topology/concrete_spaces.ma index 89665e5f9..568f3c052 100644 --- a/helm/software/matita/library/formal_topology/concrete_spaces.ma +++ b/helm/software/matita/library/formal_topology/concrete_spaces.ma @@ -56,15 +56,19 @@ definition fintersects: ∀o: basic_pair. form o → form o → Ω \sup (form o) qed. interpretation "fintersects" 'fintersects U V = (fintersects _ U V). -(* -definition fintersectsS ≝ - λo: basic_pair.λa,b: Ω \sup (form o). - {c | ext ?? (rel o) c ⊆ extS ?? (rel o) a ∩ extS ?? (rel o) b }. + +definition fintersectsS: + ∀o:basic_pair. Ω \sup (form o) → Ω \sup (form o) → Ω \sup (form o). + apply (λo: basic_pair.λa,b: Ω \sup (form o). + {c | ext ?? (rel o) c ⊆ extS ?? (rel o) a ∩ extS ?? (rel o) b }); + intros; simplify; apply (.= (†H)‡#); apply refl1. +qed. interpretation "fintersectsS" 'fintersects U V = (fintersectsS _ U V). -definition relS: ∀o: basic_pair. concr o → Ω \sup (form o) → CProp ≝ - λo,x,S. ∃y.y ∈ S ∧ x ⊩ y. +(* +definition relS: ∀o: basic_pair. concr o → Ω \sup (form o) → CProp. + apply (λo:basic_pair.λx:concr o.λS: Ω \sup (form o).∃y: form o.y ∈ S ∧ x ⊩ y); interpretation "basic pair relation for subsets" 'Vdash2 x y = (relS _ x y). interpretation "basic pair relation for subsets (non applied)" 'Vdash = (relS _). -- 2.39.2