From 810db29f760117d933ee1f74328043b8fce43847 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Wed, 3 Jan 2007 17:33:22 +0000 Subject: [PATCH] Notation is finally fully working everywhere. What a great day! --- matita/dama/fields.ma | 2 +- matita/dama/integration_algebras.ma | 18 +++++++----------- matita/dama/ordered_sets.ma | 2 +- matita/dama/reals.ma | 2 +- 4 files changed, 10 insertions(+), 14 deletions(-) diff --git a/matita/dama/fields.ma b/matita/dama/fields.ma index 305c49764..5ab17edae 100644 --- a/matita/dama/fields.ma +++ b/matita/dama/fields.ma @@ -21,7 +21,7 @@ record is_field (R:ring) (inv:∀x:R.x ≠ 0 → R) : Prop { (* multiplicative abelian properties *) mult_comm_: symmetric ? (mult R); (* multiplicative group properties *) - inv_inverse_: ∀x.∀p: x ≠ 0. mult ? (inv x p) x = 1 + inv_inverse_: ∀x.∀p: x ≠ 0. inv x p * x = 1 }. lemma opp_opp: ∀R:ring. ∀x:R. --x=x. diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index 6d4e7c3c9..78b41cc10 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -102,7 +102,7 @@ qed. coercion cic:/matita/integration_algebras/rs_ordered_abelian_group.con. record is_riesz_space (K:ordered_field_ch0) (V:pre_riesz_space K) : Prop ≝ - { rs_compat_le_times: ∀a:K.∀f:V. zero K≤a → zero V≤f → zero V≤a*f + { rs_compat_le_times: ∀a:K.∀f:V. 0≤a → 0≤f → 0≤a*f }. record riesz_space (K:ordered_field_ch0) : Type \def @@ -122,7 +122,7 @@ record sequentially_order_continuous (K) (V:riesz_space K) (T:V→K) : Prop ≝ is_increasing K (λn.T (a n)) ∧ tends_to ? (λn.T (a n)) (T l) }. -definition absolute_value \def λK.λS:riesz_space K.λf.l_join S f (-f). +definition absolute_value ≝ λK.λS:riesz_space K.λf:S.f ∨ -f. (**************** Normed Riesz spaces ****************************) @@ -175,7 +175,7 @@ definition is_weak_unit ≝ 3. Fremlin proves u > 0 implies x /\ u > 0 > 0 for Archimedean spaces only. We pick this definition for now. *) λR:real.λV:archimedean_riesz_space R.λe:V. - ∀v:V. lt V 0 v → lt V 0 (l_meet V v e). + ∀v:V. 0