From 87da9f97fb41575b986b9567265abef4e67d07af Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Fri, 29 Dec 2006 14:35:28 +0000 Subject: [PATCH] Record with simulated manifest types are now used everywhere in integration_algebras.ma. They seem to work really very well (up to missing but due syntactic sugar). --- matita/dama/integration_algebras.ma | 64 +++++++++++++++++++---------- 1 file changed, 43 insertions(+), 21 deletions(-) diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index fdf082df3..322e59a56 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -256,45 +256,67 @@ record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop a_associative_right: ∀a,f,g. a * (mult f g) = mult f (a * g) }. -record algebra (K: field) (V:vector_space K) (a_one:V) : Type \def - { a_mult: V → V → V; +record algebra (K: field) : Type \def + { a_vector_space:> vector_space K; + a_one: a_vector_space; + a_mult: a_vector_space → a_vector_space → a_vector_space; a_algebra_properties: is_algebra ? ? a_mult a_one }. interpretation "Algebra product" 'times a b = - (cic:/matita/integration_algebras/a_mult.con _ _ _ a b). + (cic:/matita/integration_algebras/a_mult.con _ a b). definition ring_of_algebra ≝ - λK.λV:vector_space K.λone:V.λA:algebra ? V one. - mk_ring V (a_mult ? ? ? A) one - (a_ring ? ? ? ? (a_algebra_properties ? ? ? A)). + λK.λA:algebra K. + mk_ring A (a_mult ? A) (a_one ? A) + (a_ring ? ? ? ? (a_algebra_properties ? A)). coercion cic:/matita/integration_algebras/ring_of_algebra.con. -record is_f_algebra (K) (S:archimedean_riesz_space K) (one: S) - (A:algebra ? S one) : Prop -\def +record pre_f_algebra (K:ordered_field_ch0) : Type ≝ + { fa_archimedean_riesz_space:> archimedean_riesz_space K; + fa_algebra_:> algebra K; + fa_with: a_vector_space ? fa_algebra_ = rs_vector_space ? fa_archimedean_riesz_space + }. + +lemma fa_algebra: ∀K:ordered_field_ch0.pre_f_algebra K → algebra K. + intros (K A); + apply mk_algebra; + [ apply (rs_vector_space ? A) + | elim daemon + | elim daemon + | elim daemon + ] + qed. + +coercion cic:/matita/integration_algebras/fa_algebra.con. + +record is_f_algebra (K) (A:pre_f_algebra K) : Prop ≝ { compat_mult_le: - ∀f,g:S. - os_le S 0 f → os_le S 0 g → os_le S 0 (a_mult ? ? ? A f g); + ∀f,g:A. + os_le A (zero A) f → os_le A (zero A) g → os_le A (zero A) (a_mult ? A f g); compat_mult_meet: - ∀f,g,h:S. - l_meet S f g = 0 → l_meet S (a_mult ? ? ? A h f) g = 0 + ∀f,g,h:A. + l_meet A f g = (zero A) → l_meet A (a_mult ? A h f) g = (zero A) }. -record f_algebra (K:ordered_field_ch0) (R:archimedean_riesz_space K) (one:R) : -Type \def -{ fa_algebra:> algebra ? R one; - fa_f_algebra_properties: is_f_algebra ? ? ? fa_algebra +record f_algebra (K:ordered_field_ch0) : Type ≝ +{ fa_pre_f_algebra:> pre_f_algebra K; + fa_f_algebra_properties: is_f_algebra ? fa_pre_f_algebra }. (* to be proved; see footnote 2 in the paper by Spitters *) axiom symmetric_a_mult: - ∀K,R,one.∀A:f_algebra K R one. symmetric ? (a_mult ? ? ? A). + ∀K.∀A:f_algebra K. symmetric ? (a_mult ? A). record integration_f_algebra (R:real) : Type \def { ifa_integration_riesz_space:> integration_riesz_space R; - ifa_f_algebra:> - f_algebra ? ifa_integration_riesz_space - (irs_unit ? ifa_integration_riesz_space) + ifa_f_algebra_: f_algebra R; + ifa_with: + fa_archimedean_riesz_space ? ifa_f_algebra_ = + irs_archimedean_riesz_space ? ifa_integration_riesz_space }. + +axiom ifa_f_algebra: ∀R:real.integration_f_algebra R → f_algebra R. + +coercion cic:/matita/integration_algebras/ifa_f_algebra.con. \ No newline at end of file -- 2.39.2