From 88536b5cc7f2fb3d53f5f33cf946989a7e1436be Mon Sep 17 00:00:00 2001 From: Ferruccio Guidi Date: Thu, 3 May 2007 17:17:40 +0000 Subject: [PATCH] elim with a pattern now works correctly (hopefully) --- .../components/tactics/primitiveTactics.ml | 283 +++++++++++------- 1 file changed, 171 insertions(+), 112 deletions(-) diff --git a/helm/software/components/tactics/primitiveTactics.ml b/helm/software/components/tactics/primitiveTactics.ml index 5c7af528f..64db99666 100644 --- a/helm/software/components/tactics/primitiveTactics.ml +++ b/helm/software/components/tactics/primitiveTactics.ml @@ -25,13 +25,13 @@ (* $Id$ *) -open ProofEngineTypes - exception TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple exception NotAnInductiveTypeToEliminate exception WrongUriToVariable of string exception NotAnEliminator +module PET = ProofEngineTypes + (* lambda_abstract newmeta ty *) (* returns a triple [bo],[context],[ty'] where *) (* [ty] = Pi/LetIn [context].[ty'] ([context] is a vector!) *) @@ -73,7 +73,7 @@ let lambda_abstract ?(howmany=(-1)) metasenv context newmeta ty mk_fresh_name = let t = CicReduction.whd ~delta:true context t in collect_context context howmany false t else - raise (Fail (lazy "intro(s): not enough products or let-ins")) + raise (PET.Fail (lazy "intro(s): not enough products or let-ins")) in collect_context context howmany true ty @@ -341,7 +341,7 @@ let apply_with_subst ~term ?(subst=[]) ?(maxmeta=0) status = (* TODO cacciare anche altre eccezioni? *) with | CicUnification.UnificationFailure msg - | CicTypeChecker.TypeCheckerFailure msg -> raise (Fail msg) + | CicTypeChecker.TypeCheckerFailure msg -> raise (PET.Fail msg) (* ALB *) let apply_tac_verbose ~term status = @@ -360,9 +360,9 @@ let apply_tac ~term = with | CicUnification.UnificationFailure msg | CicTypeChecker.TypeCheckerFailure msg -> - raise (Fail msg) + raise (PET.Fail msg) in - mk_tactic (apply_tac ~term) + PET.mk_tactic (apply_tac ~term) let intros_tac ?howmany ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) ()= let intros_tac @@ -383,7 +383,7 @@ let intros_tac ?howmany ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_ in (newproof, [newmeta]) in - mk_tactic (intros_tac ~mk_fresh_name_callback ()) + PET.mk_tactic (intros_tac ~mk_fresh_name_callback ()) let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term = let cut_tac @@ -418,7 +418,7 @@ let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst: in (newproof, [newmeta1 ; newmeta2]) in - mk_tactic (cut_tac ~mk_fresh_name_callback term) + PET.mk_tactic (cut_tac ~mk_fresh_name_callback term) let letin_tac ?(mk_fresh_name_callback=FreshNamesGenerator.mk_fresh_name ~subst:[]) term = let letin_tac @@ -456,7 +456,7 @@ let letin_tac ?(mk_fresh_name_callback=FreshNamesGenerator.mk_fresh_name ~subst: in (newproof, [newmeta]) in - mk_tactic (letin_tac ~mk_fresh_name_callback term) + PET.mk_tactic (letin_tac ~mk_fresh_name_callback term) (** functional part of the "exact" tactic *) let exact_tac ~term = @@ -475,17 +475,16 @@ let exact_tac ~term = (newproof, []) end else - raise (Fail (lazy "The type of the provided term is not the one expected.")) + raise (PET.Fail (lazy "The type of the provided term is not the one expected.")) in - mk_tactic (exact_tac ~term) + PET.mk_tactic (exact_tac ~term) (* not really "primitive" tactics .... *) module TC = CicTypeChecker -module U = UriManager +module UM = UriManager module R = CicReduction module C = Cic -module PET = ProofEngineTypes module PEH = ProofEngineHelpers module PER = ProofEngineReduction module MS = CicMetaSubst @@ -493,24 +492,86 @@ module S = CicSubstitution module T = Tacticals module RT = ReductionTactics +let beta_after_elim_tac upto predicate = + let beta_after_elim_tac status = + let proof, goal = status in + let _, metasenv, _, _, _ = proof in + let _, _, ty = CicUtil.lookup_meta goal metasenv in + let mk_pattern ~equality ~upto ~predicate ty = + (* code adapted from ProceduralConversion.generalize *) + let meta = C.Implicit None in + let hole = C.Implicit (Some `Hole) in + let anon = C.Anonymous in + let is_meta = + let map b = function + | C.Implicit None when b -> b + | _ -> false + in + List.fold_left map true + in + let rec gen_fix len k (name, i, ty, bo) = + name, i, gen_term k ty, gen_term (k + len) bo + and gen_cofix len k (name, ty, bo) = + name, gen_term k ty, gen_term (k + len) bo + and gen_term k = function + | C.Sort _ + | C.Implicit _ + | C.Const (_, _) + | C.Var (_, _) + | C.MutInd (_, _, _) + | C.MutConstruct (_, _, _, _) + | C.Meta (_, _) + | C.Rel _ -> meta + | C.Appl (hd :: tl) when equality hd (S.lift k predicate) -> + assert (List.length tl = upto); + hole + | C.Appl ts -> + let ts = List.map (gen_term k) ts in + if is_meta ts then meta else C.Appl ts + | C.Cast (te, ty) -> + let te, ty = gen_term k te, gen_term k ty in + if is_meta [te; ty] then meta else C.Cast (te, ty) + | C.MutCase (sp, i, outty, t, pl) -> + let outty, t, pl = gen_term k outty, gen_term k t, List.map (gen_term k) pl in + if is_meta (outty :: t :: pl) then meta else hole (* C.MutCase (sp, i, outty, t, pl) *) + | C.Prod (_, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta else C.Prod (anon, s, t) + | C.Lambda (_, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta else C.Lambda (anon, s, t) + | C.LetIn (_, s, t) -> + let s, t = gen_term k s, gen_term (succ k) t in + if is_meta [s; t] then meta else C.LetIn (anon, s, t) + | C.Fix (i, fl) -> C.Fix (i, List.map (gen_fix (List.length fl) k) fl) + | C.CoFix (i, fl) -> C.CoFix (i, List.map (gen_cofix (List.length fl) k) fl) + in + None, [], Some (gen_term 0 ty) + in + let equality = CicUtil.alpha_equivalence in + let pattern = mk_pattern ~equality ~upto ~predicate ty in + let tactic = RT.head_beta_reduce_tac ~delta:false ~upto ~pattern in + PET.apply_tactic tactic status + in + PET.mk_tactic beta_after_elim_tac + let elim_tac ?using ?(pattern = PET.conclusion_pattern None) term = let elim_tac (proof, goal) = + let cpatt = match pattern with + | None, [], Some cpatt -> cpatt + | _ -> raise (PET.Fail (lazy "not implemented")) + in let ugraph = CicUniv.empty_ugraph in let curi, metasenv, proofbo, proofty, attrs = proof in let conjecture = CicUtil.lookup_meta goal metasenv in - let metano, context, ty = conjecture in -(* let (term, metasenv, _ugraph), cpatt = match pattern with - | Some f, [], Some cpatt -> f context metasenv ugraph, cpatt - | _ -> assert false - in -*) + let metano, context, ty = conjecture in let termty,_ugraph = TC.type_of_aux' metasenv context term ugraph in let termty = CicReduction.whd context termty in - let (termty,metasenv',arguments,_fresh_meta) = + let termty, metasenv', arguments, _fresh_meta = TermUtil.saturate_term (ProofEngineHelpers.new_meta_of_proof proof) metasenv context termty 0 in let term = if arguments = [] then term else Cic.Appl (term::arguments) in - let uri,exp_named_subst,typeno,args = + let uri, exp_named_subst, typeno, _args = match termty with C.MutInd (uri,typeno,exp_named_subst) -> (uri,exp_named_subst,typeno,[]) | C.Appl ((C.MutInd (uri,typeno,exp_named_subst))::args) -> @@ -518,7 +579,7 @@ let elim_tac ?using ?(pattern = PET.conclusion_pattern None) term = | _ -> raise NotAnInductiveTypeToEliminate in let eliminator_uri = - let buri = U.buri_of_uri uri in + let buri = UM.buri_of_uri uri in let name = let o,_ugraph = CicEnvironment.get_obj ugraph uri in match o with @@ -537,25 +598,16 @@ let elim_tac ?using ?(pattern = PET.conclusion_pattern None) term = | C.Meta (_,_) -> raise TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple | _ -> assert false in - U.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") + UM.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in let eliminator_ref = match using with - | None -> C.Const (eliminator_uri,exp_named_subst) + | None -> C.Const (eliminator_uri, exp_named_subst) | Some t -> t in - let ety,_ugraph = + let ety, _ugraph = TC.type_of_aux' metasenv' context eliminator_ref ugraph in (* FG: ADDED PART ***********************************************************) (* FG: we can not assume eliminator is the default eliminator ***************) -(* - let add_lambdas n t = - let rec aux n t = - if n <= 0 then t - else C.Lambda (C.Anonymous, C.Implicit None, aux (pred n) t) - in - aux n (S.lift n t) - in -*) let rec args_init n f = if n <= 0 then [] else f n :: args_init (pred n) f in @@ -565,86 +617,93 @@ let elim_tac ?using ?(pattern = PET.conclusion_pattern None) term = | _, C.Appl (C.Rel i :: _) when i > 1 && i <= args_no -> i | _ -> raise NotAnEliminator in -(* - let _, lambdas = PEH.split_with_whd (List.nth splits pred_pos) in - let termty_ty = - let termty_ty,_ugraph = TC.type_of_aux' metasenv' context termty ugraph in - CicReduction.whd context termty_ty - in -*) -(* - let metasenv', term, pred, upto = match cpatt, termty_ty with - | C.Implicit (Some `Hole), _ - | _, C.Sort C.Prop when lambdas = 0 -> metasenv', term, C.Implicit None, 0 - | _ -> -(* FG: we find the predicate for the eliminator as in the rewrite tactic ****) - let fresh_name = - FreshNamesGenerator.mk_fresh_name - ~subst:[] metasenv' context C.Anonymous ~typ:termty + let upto, metasenv', pred, term = match pattern with + | None, [], Some (C.Implicit (Some `Hole)) -> + 0, metasenv', C.Implicit None, term + | _ -> + let instantiated_eliminator = + let f n = if n = 1 then term else C.Implicit None in + C.Appl (eliminator_ref :: args_init args_no f) in - let lazy_term c m u = - let distance = List.length c - List.length context in - S.lift distance term, m, u + let _actual_term, iety, _metasenv'', _ugraph = + CicRefine.type_of_aux' metasenv' context instantiated_eliminator ugraph in - let pattern = Some lazy_term, [], Some cpatt in - let subst, metasenv', _ugraph, _conjecture, selected_terms = - ProofEngineHelpers.select - ~metasenv:metasenv' ~ugraph ~conjecture ~pattern + let _actual_meta, actual_args = match iety with + | C.Meta (i, _) -> i, [] + | C.Appl (C.Meta (i, _) :: args) -> i, args + | _ -> assert false in - let metasenv' = MS.apply_subst_metasenv subst metasenv' in - let map (_context_of_t, t) l = t :: l in - let what = List.fold_right map selected_terms [] in - let ty = MS.apply_subst subst ty in - let term = MS.apply_subst subst term in - let termty = MS.apply_subst subst termty in - let abstr_ty = PER.replace_with_rel_1_from ~equality:(==) ~what 1 ty in - let abstr_ty = MS.apply_subst subst abstr_ty in - let pred_body = C.Lambda (fresh_name, termty, abstr_ty) in - metasenv', term, add_lambdas (pred lambdas) pred_body, lambdas - in + (* let _, upto = PEH.split_with_whd (List.nth splits pred_pos) in *) + let upto = List.length actual_args in + let rec mk_pred metasenv context' pred term' = function + | [] -> metasenv, pred, term' + | term :: tail -> +(* FG: we find the predicate for the eliminator as in the rewrite tactic ****) + let termty, _ugraph = TC.type_of_aux' metasenv context' term ugraph in + let termty = CicReduction.whd context' termty in + let fresh_name = + FreshNamesGenerator.mk_fresh_name + ~subst:[] metasenv context' C.Anonymous ~typ:termty + in + let hyp = Some (fresh_name, C.Decl termty) in + let lazy_term c m u = + let distance = List.length c - List.length context in + S.lift distance term, m, u + in + let pattern = Some lazy_term, [], Some cpatt in + let subst, metasenv, _ugraph, _conjecture, selected_terms = + ProofEngineHelpers.select + ~metasenv ~ugraph ~conjecture:(metano, context, pred) ~pattern + in + let metasenv = MS.apply_subst_metasenv subst metasenv in + let map (_context_of_t, t) l = t :: l in + let what = List.fold_right map selected_terms [] in + let term' = MS.apply_subst subst term' in + let termty = MS.apply_subst subst termty in + let pred = PER.replace_with_rel_1_from ~equality:(==) ~what 1 pred in + let pred = MS.apply_subst subst pred in + let pred = C.Lambda (fresh_name, termty, pred) in + mk_pred metasenv (hyp :: context') pred term' tail + in + let metasenv', pred, term = mk_pred metasenv' context ty term actual_args in + HLog.debug ("PRED: " ^ CicPp.ppterm ~metasenv:metasenv' pred ^ " ARGS: " ^ String.concat " " (List.map (CicPp.ppterm ~metasenv:metasenv') actual_args)); + upto, metasenv', pred, term + in (* FG: END OF ADDED PART ****************************************************) -*) - let pred, upto = C.Implicit None, 0 in - - let term_to_refine = - let f n = - if n = pred_pos then pred else - if n = 1 then term else C.Implicit None - in - C.Appl (eliminator_ref :: args_init args_no f) + let term_to_refine = + let f n = + if n = pred_pos then pred else + if n = 1 then term else C.Implicit None in - let refined_term,_refined_termty,metasenv'',_ugraph = - CicRefine.type_of_aux' metasenv' context term_to_refine - ugraph - in - let new_goals = - ProofEngineHelpers.compare_metasenvs - ~oldmetasenv:metasenv ~newmetasenv:metasenv'' - in - let proof' = curi,metasenv'',proofbo,proofty, attrs in - let proof'', new_goals' = - apply_tactic (apply_tac ~term:refined_term) (proof',goal) - in - (* The apply_tactic can have closed some of the new_goals *) - let patched_new_goals = - let (_,metasenv''',_,_, _) = proof'' in - List.filter - (function i -> List.exists (function (j,_,_) -> j=i) metasenv''' - ) new_goals @ new_goals' - in - let res = proof'', patched_new_goals in - if upto = 0 then res else - let pattern = PET.conclusion_pattern None in - let continuation = - RT.simpl_tac ~pattern - (* RT.head_beta_reduce_tac ~delta:false ~upto ~pattern *) - in - let dummy_status = proof,goal in - PET.apply_tactic - (T.then_ ~start:(PET.mk_tactic (fun _ -> res)) ~continuation) - dummy_status - in - mk_tactic elim_tac + C.Appl (eliminator_ref :: args_init args_no f) + in + let refined_term,_refined_termty,metasenv'',_ugraph = + CicRefine.type_of_aux' metasenv' context term_to_refine ugraph + in + let new_goals = + ProofEngineHelpers.compare_metasenvs + ~oldmetasenv:metasenv ~newmetasenv:metasenv'' + in + let proof' = curi,metasenv'',proofbo,proofty, attrs in + let proof'', new_goals' = + PET.apply_tactic (apply_tac ~term:refined_term) (proof',goal) + in + (* The apply_tactic can have closed some of the new_goals *) + let patched_new_goals = + let (_,metasenv''',_,_, _) = proof'' in + List.filter + (function i -> List.exists (function (j,_,_) -> j=i) metasenv''') + new_goals @ new_goals' + in + let res = proof'', patched_new_goals in + if upto = 0 then res else + let continuation = beta_after_elim_tac upto pred in + let dummy_status = proof,goal in + PET.apply_tactic + (T.then_ ~start:(PET.mk_tactic (fun _ -> res)) ~continuation) + dummy_status + in + PET.mk_tactic elim_tac ;; let cases_intros_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term = @@ -766,7 +825,7 @@ let cases_intros_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_nam in let proof' = curi,metasenv'',proofbo,proofty, attrs in let proof'', new_goals' = - apply_tactic (apply_tac ~term:refined_term) (proof',goal) + PET.apply_tactic (apply_tac ~term:refined_term) (proof',goal) in (* The apply_tactic can have closed some of the new_goals *) let patched_new_goals = @@ -777,7 +836,7 @@ let cases_intros_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_nam in proof'', patched_new_goals in - mk_tactic (cases_tac ~term) + PET.mk_tactic (cases_tac ~term) ;; @@ -816,4 +875,4 @@ let letout_tac = let newproof, _ = ProofEngineHelpers.subst_meta_in_proof proof metano bo'[newmeta,context_for_newmeta,newmetaty] in newproof, [newmeta] in - mk_tactic letout_tac + PET.mk_tactic letout_tac -- 2.39.2