From 8a4dae57d41a2000778341240c823287eb15bb35 Mon Sep 17 00:00:00 2001 From: Andrea Asperti Date: Wed, 9 Nov 2005 11:06:26 +0000 Subject: [PATCH] Added an example (well founded recursion). --- helm/papers/system_T/t.tex | 60 +++++++++++++++++++++++++++++++++++++- 1 file changed, 59 insertions(+), 1 deletion(-) diff --git a/helm/papers/system_T/t.tex b/helm/papers/system_T/t.tex index 14ead6b91..642c8c35d 100644 --- a/helm/papers/system_T/t.tex +++ b/helm/papers/system_T/t.tex @@ -337,7 +337,65 @@ We proceed to prove that all axioms $ax:Ax$ are realized by $\sem{ax}$. \end{itemize} -%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% + +\noindent +{\bf example}\\ +Let us prove the following principle of well founded induction: +\[(\forall m.(\forall p. p < m \to P p) \to P m) \to \forall n.P n\] +In the following proof we shall make use of proof-terms, since we finally +wish to extract the computational content; we leave to reader the easy +check that the proof object describes the usual and natural proof +of the statement. + +We assume to have already proved the following lemmas (having trivial +realizers):\\ +\[L: \lambda b.p < 0 \to \bot\] +\[M: \lambda p,q,n.p < q \to q \le (S n) \to p \le n \] +Let us assume $h: \forall m.(\forall p. p < m \to P p) \to P m$. +We prove by induction on n that $\forall q. q \le n \to P q$. +For $n=0$, we get a proof of $P \;0$ by +\[ B: \lambda q.\lambda \_:q \le n. h \;0\; +(\lambda p.\lambda k:p < 0. false\_ind \;(L\;p\; k)) \] +In the inductive case, we must prove that, for any n, +\[(\forall q. q \le n \to P q) \to (\forall q. q \le S n \to P q)\] +Assume $h1: \forall q. q \le n \to P q$ and +$h2: q \le S \;n$. Let us prove $\forall p. p < q \to P p$. +If $h3: p < q$ then $(M\; p\; q\; n\; h3\; h2): p \le n$, hence +$h1 \;p \; (M\; p\; q\; n\; h3\; h2): P p$.\\ +In conclusion, the proof of the +inductive case is +\[I: \lambda h1:\forall q. q \le n \to P\; q.\lambda q.\lambda h2:q \le S n. +h \; q \; (\lambda p.\lambda h3:p < q.h1 \;p\; (M\; p\; q\; n\; h3\; h2)) \] +(where $h$ is free in I). +The full proof is +\[ \lambda m.\lambda h: \forall m.(\forall p. p < m \to P p) \to P m. +nat\_ind \;B \; I \;m\; (le\_n \; m) \] +where $le\_n$ is a proof that $\forall n. n \le n$.\\ +Form the previous proof,after stripping terminal objects, +and a bit of eta-contraction to make +the term more readable, we extract the following term (types are omitted): + +\[R' = \lambda m.\lambda f. +R\; (f \; O\; (\lambda q.*_A))\; +(\lambda n\lambda g\lambda q.f \;q\;g)\;m \;m\] + +The intuition of this operator is the following: supose to +have a recursive definition $h q = F[h]$ where $q:\N$ and +$F[h]: A$. This defines a functional +$f: \lambda q.\lambda g.F[g]: N\to(N\to A) \to A$, such that +(morally) $h$ is the fixpoint of $f$. For instance, +in the case of the fibonacci function, $f$ is +\[\lambda q. \lambda g. +if\; q = 0\;then\; 1\; else\; if\; q = 1\; then\; 1\; else\; g (q-1)+g (q-2)\] + +So $f$ build a new +approximation of $h$ from the previous approximation $h$ taken +as input. $R'$ precisely computes the mth-approximation starting +from a dummy function $(\lambda q.*_A)$. Alternatively, +you may look at $g$ as the ``history'' (curse of values) of $h$ +for all values less or equal to $q$; then $f$ extend $g$ to +$q+1$. + \section{Inductive types} The notation we will use is similar to the one used in \cite{Werner} and \cite{Paulin89} but we prefer -- 2.39.2