From 90ff94e74ceed0954b8599bff55d5c84f15c1b9f Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Thu, 23 Sep 2010 22:39:08 +0000 Subject: [PATCH] morphism support moved to sets/ and logic/cprop --- helm/software/matita/nlibrary/logic/cprop.ma | 165 ++++++++++- .../software/matita/nlibrary/re/re-setoids.ma | 261 +++++------------- helm/software/matita/nlibrary/sets/setoids.ma | 9 +- .../software/matita/nlibrary/sets/setoids1.ma | 15 +- helm/software/matita/nlibrary/sets/sets.ma | 103 ++++++- 5 files changed, 350 insertions(+), 203 deletions(-) diff --git a/helm/software/matita/nlibrary/logic/cprop.ma b/helm/software/matita/nlibrary/logic/cprop.ma index 47ccef5d0..1efc042ff 100644 --- a/helm/software/matita/nlibrary/logic/cprop.ma +++ b/helm/software/matita/nlibrary/logic/cprop.ma @@ -88,4 +88,167 @@ unification hint 0 ≔ A,B ⊢ mk_unary_morphism1 … (λX:CProp[0].mk_unary_morphism1 … (λY:CProp[0]. X → Y) (prop11 … (if_morphism X))) (prop11 … if_morphism) - A B ≡ A → B. \ No newline at end of file + A B ≡ A → B. + +(* not as morphism *) +nlemma Not_morphism : CProp[0] ⇒_1 CProp[0]. +@(λx:CProp[0].¬ x); #a b; *; #; @; /3/; nqed. + +unification hint 0 ≔ P : CProp[0]; + A ≟ CPROP, + B ≟ CPROP, + M ≟ mk_unary_morphism1 ?? (λP.¬ P) (prop11 ?? Not_morphism) +(*------------------------*)⊢ + fun11 A B M P ≡ ¬ P. + +(* Ex setoid support *) + +(* The caml, as some patches for it +ncoercion setoid1_of_setoid : ∀s:setoid. setoid1 ≝ setoid1_of_setoid on _s: setoid to setoid1. +*) + +(* simple case where the whole predicate can be rewritten *) +nlemma Ex_morphism : ∀S:setoid.((setoid1_of_setoid S) ⇒_1 CProp[0]) ⇒_1 CProp[0]. +#S; @(λP: (setoid1_of_setoid S) ⇒_1 CProp[0].Ex S P); +#P Q E; @; *; #x Px; @x; ncases (E x x #); /2/; nqed. + +unification hint 0 ≔ S : setoid, P : (setoid1_of_setoid S) ⇒_1 CProp[0]; + A ≟ unary_morphism1_setoid1 (setoid1_of_setoid S) CPROP, + B ≟ CPROP, + M ≟ mk_unary_morphism1 ?? (λP: (setoid1_of_setoid S) ⇒_1 CProp[0].Ex S P) + (prop11 ?? (Ex_morphism S)) +(*------------------------*)⊢ + fun11 A B M P ≡ Ex S (fun11 (setoid1_of_setoid S) CPROP P). + +nlemma Ex_morphism_eta : ∀S:setoid.((setoid1_of_setoid S) ⇒_1 CProp[0]) ⇒_1 CProp[0]. +#S; @(λP: (setoid1_of_setoid S) ⇒_1 CProp[0].Ex S (λx.P x)); +#P Q E; @; *; #x Px; @x; ncases (E x x #); /2/; nqed. + +unification hint 0 ≔ S : setoid, P : (setoid1_of_setoid S) ⇒_1 CProp[0]; + A ≟ unary_morphism1_setoid1 (setoid1_of_setoid S) CPROP, + B ≟ CPROP, + M ≟ mk_unary_morphism1 ?? (λP: (setoid1_of_setoid S) ⇒_1 CProp[0].Ex S (λx.P x)) + (prop11 ?? (Ex_morphism_eta S)) +(*------------------------*)⊢ + fun11 A B M P ≡ Ex S (λx.fun11 (setoid1_of_setoid S) CPROP P x). + +nlemma Ex_setoid : ∀S:setoid.((setoid1_of_setoid S) ⇒_1 CPROP) → setoid. +#T P; @ (Ex T (λx:T.P x)); @; ##[ #H1 H2; napply True |##*: //; ##] nqed. + +unification hint 0 ≔ T,P ; + S ≟ (Ex_setoid T P) +(*---------------------------*) ⊢ + Ex T (λx:T.P x) ≡ carr S. + +(* couts how many Ex we are traversing *) +ninductive counter : Type[0] ≝ + | End : counter + | Next : (Prop → Prop) → (* dummy arg please the notation mechanism *) + counter → counter. + +(* to rewrite terms (live in setoid) *) +nlet rec mk_P (S, T : setoid) (n : counter) on n ≝ + match n with [ End ⇒ T → CProp[0] | Next _ m ⇒ S → (mk_P S T m) ]. + +nlet rec mk_F (S, T : setoid) (n : counter) on n ≝ + match n with [ End ⇒ T | Next _ m ⇒ S → (mk_F S T m) ]. + +nlet rec mk_E (S, T : setoid) (n : counter) on n : ∀f,g : mk_F S T n. CProp[0] ≝ + match n with + [ End ⇒ λf,g:T. f = g + | Next q m ⇒ λf,g: mk_F S T (Next q m). ∀x:S.mk_E S T m (f x) (g x) ]. + +nlet rec mk_H (S, T : setoid) (n : counter) on n : +∀P1,P2: mk_P S T n.∀f,g : mk_F S T n. CProp[1] ≝ + match n with + [ End ⇒ λP1,P2:mk_P S T End.λf,g:T. f = g → P1 f =_1 P2 g + | Next q m ⇒ λP1,P2: mk_P S T (Next q m).λf,g: mk_F S T (Next q m). + ∀x:S.mk_H S T m (P1 x) (P2 x) (f x) (g x) ]. + +nlet rec mk_Ex (S, T : setoid) (n : counter) on n : +∀P: mk_P S T n.∀f : mk_F S T n. CProp[0] ≝ + match n with + [ End ⇒ λP:mk_P S T End.λf:T. P f + | Next q m ⇒ λP: mk_P S T (Next q m).λf: mk_F S T (Next q m). + ∃x:S.mk_Ex S T m (P x) (f x) ]. + +nlemma Sig_generic : ∀S,T.∀n:counter.∀P,f,g. + mk_E S T n f g → mk_H S T n P P f g → mk_Ex S T n P f =_1 mk_Ex S T n P g. +#S T n; nelim n; nnormalize; +##[ #P f g E H; /2/; +##| #q m IH P f g E H; @; *; #x Px; @x; ncases (IH … (E x) (H x)); /3/; ##] +nqed. + +(* to rewrite propositions (live in setoid1) *) +nlet rec mk_P1 (S : setoid) (T : setoid1) (n : counter) on n ≝ + match n with [ End ⇒ T → CProp[0] | Next _ m ⇒ S → (mk_P1 S T m) ]. + +nlet rec mk_F1 (S : setoid) (T : setoid1) (n : counter) on n ≝ + match n with [ End ⇒ T | Next _ m ⇒ S → (mk_F1 S T m) ]. + +nlet rec mk_E1 (S : setoid) (T : setoid1) (n : counter) on n : ∀f,g : mk_F1 S T n. CProp[1] ≝ + match n with + [ End ⇒ λf,g:T. f =_1 g + | Next q m ⇒ λf,g: mk_F1 S T (Next q m). ∀x:S.mk_E1 S T m (f x) (g x) ]. + +nlet rec mk_H1 (S : setoid) (T : setoid1) (n : counter) on n : +∀P1,P2: mk_P1 S T n.∀f,g : mk_F1 S T n. CProp[1] ≝ + match n with + [ End ⇒ λP1,P2:mk_P1 S T End.λf,g:T. f = g → P1 f =_1 P2 g + | Next q m ⇒ λP1,P2: mk_P1 S T (Next q m).λf,g: mk_F1 S T (Next q m). + ∀x:S.mk_H1 S T m (P1 x) (P2 x) (f x) (g x) ]. + +nlet rec mk_Ex1 (S : setoid) (T : setoid1) (n : counter) on n : +∀P: mk_P1 S T n.∀f : mk_F1 S T n. CProp[0] ≝ + match n with + [ End ⇒ λP:mk_P1 S T End.λf:T. P f + | Next q m ⇒ λP: mk_P1 S T (Next q m).λf: mk_F1 S T (Next q m). + ∃x:S.mk_Ex1 S T m (P x) (f x) ]. + +nlemma Sig_generic1 : ∀S,T.∀n:counter.∀P,f,g. + mk_E1 S T n f g → mk_H1 S T n P P f g → mk_Ex1 S T n P f =_1 mk_Ex1 S T n P g. +#S T n; nelim n; nnormalize; +##[ #P f g E H; /2/; +##| #q m IH P f g E H; @; *; #x Px; @x; ncases (IH … (E x) (H x)); /3/; ##] +nqed. + +(* notation "∑x1,...,xn. E / H ; P" were: + - x1...xn are bound in E and P, H is bound in P + - H is an identifier that will have the type of E in P + - P is the proof that the two existentially quantified predicates are equal*) +notation > "∑ list1 ident x sep , . term 56 E / ident nE ; term 19 H" with precedence 20 +for @{ 'Sig_gen + ${ fold right @{ 'End } rec acc @{ ('Next (λ${ident x}.${ident x}) $acc) } } + ${ fold right @{ $E } rec acc @{ λ${ident x}.$acc } } + ${ fold right @{ λ${ident nE}.$H } rec acc @{ λ${ident x}.$acc } } +}. + +interpretation "next" 'Next x y = (Next x y). +interpretation "end" 'End = End. +interpretation "sig_gen" 'Sig_gen n E H = (Sig_generic ?? n ??? E H). +interpretation "sig_gen1" 'Sig_gen n E H = (Sig_generic1 ?? n ??? E H). + +(* +nlemma test0 : ∀S:setoid. ∀P: (setoid1_of_setoid S) ⇒_1 CPROP.∀f,g:S → S. + (∀x:S.f x = g x) → (Ex S (λw.P (f w))) =_1 (Ex S (λw.P (g w))). +#S P f g E; napply (∑w. E w / H ; ┼_1H); nqed. + +nlemma test : ∀S:setoid. ∀P: (setoid1_of_setoid S) ⇒_1 CPROP.∀f,g:S → S. + (∀x:S.f x = g x) → (Ex S (λw.P (f w)∧ True)) =_1 (Ex S (λw.P (g w)∧ True)). +#S P f g E; napply (∑w. E w / H ; (┼_1H)╪_1#); nqed. + +nlemma test_bound : ∀S:setoid. ∀e,f: (setoid1_of_setoid S) ⇒_1 CPROP. e = f → + (Ex S (λw.e w ∧ True)) =_1 (Ex S (λw.f w ∧ True)). +#S f g E; napply (.=_1 ∑x. E x x # / H ; (H ╪_1 #)); //; nqed. + +nlemma test2 : ∀S:setoid. ∀ee: (setoid1_of_setoid S) ⇒_1 (setoid1_of_setoid S) ⇒_1 CPROP. + ∀x,y:setoid1_of_setoid S.x =_1 y → + (True ∧ (Ex S (λw.ee x w ∧ True))) =_1 (True ∧ (Ex S (λw.ee y w ∧ True))). +#S m x y E; napply (.=_1 #╪_1(∑w. E / E ; ((E ╪_1 #) ╪_1 #))). //; nqed. + +nlemma test3 : ∀S:setoid. ∀ee: (setoid1_of_setoid S) ⇒_1 (setoid1_of_setoid S) ⇒_1 CPROP. + ∀x,y:setoid1_of_setoid S.x =_1 y → + ((Ex S (λw.ee x w ∧ True) ∨ True)) =_1 ((Ex S (λw.ee y w ∧ True) ∨ True)). +#S m x y E; napply (.=_1 (∑w. E / E ; ((E ╪_1 #) ╪_1 #)) ╪_1 #). //; nqed. +*) + \ No newline at end of file diff --git a/helm/software/matita/nlibrary/re/re-setoids.ma b/helm/software/matita/nlibrary/re/re-setoids.ma index ef533aab3..29e7c5ed2 100644 --- a/helm/software/matita/nlibrary/re/re-setoids.ma +++ b/helm/software/matita/nlibrary/re/re-setoids.ma @@ -57,12 +57,25 @@ unification hint 0 ≔ S : setoid; (*-----------------------------------------------------------------------*) ⊢ carr X ≡ list T. +unification hint 0 ≔ SS : setoid; + S ≟ carr SS, + TT ≟ setoid1_of_setoid (LIST SS) +(*-----------------------------------------------------------------*) ⊢ + list S ≡ carr1 TT. + unification hint 0 ≔ S:setoid,a,b:list S; R ≟ eq0 (LIST S), L ≟ (list S) (* -------------------------------------------- *) ⊢ eq_list S a b ≡ eq_rel L R a b. +alias symbol "hint_decl" (instance 1) = "hint_decl_CProp2". +unification hint 0 ≔ S : setoid, x,y; + SS ≟ LIST S, + TT ≟ setoid1_of_setoid SS +(*-----------------------------------------*) ⊢ + eq_list S x y ≡ eq_rel1 ? (eq1 TT) x y. + notation "hvbox(hd break :: tl)" right associative with precedence 47 for @{'cons $hd $tl}. @@ -160,6 +173,8 @@ ninductive re (S: Type[0]) : Type[0] ≝ | o: re S → re S → re S | k: re S → re S. +(* setoid support for re *) + nlet rec eq_re (S:Alpha) (a,b : re S) on a : CProp[0] ≝ match a with [ z ⇒ match b with [ z ⇒ True | _ ⇒ False] @@ -206,6 +221,44 @@ unification hint 0 ≔ A:Alpha,a,b:re A; (* -------------------------------------------- *) ⊢ eq_re A a b ≡ eq_rel L R a b. +nlemma c_is_morph : ∀A:Alpha.(re A) ⇒_0 (re A) ⇒_0 (re A). +#A; napply (mk_binary_morphism … (λs1,s2:re A. c A s1 s2)); +#a; nelim a; +##[##1,2: #a' b b'; ncases a'; nnormalize; /2/ by conj; +##|#x a' b b'; ncases a'; /2/ by conj; +##|##4,5: #r1 r2 IH1 IH2 a'; ncases a'; nnormalize; /2/ by conj; +##|#r IH a'; ncases a'; nnormalize; /2/ by conj; ##] +nqed. + +(* XXX This is the good format for hints about morphisms, fix the others *) +unification hint 0 ≔ S:Alpha, A,B:re S; + MM ≟ mk_unary_morphism ?? + (λA:re S.mk_unary_morphism ?? (λB.c ? A B) (prop1 ?? (c_is_morph S A))) + (prop1 ?? (c_is_morph S)), + T ≟ RE S +(*--------------------------------------------------------------------------*) ⊢ + fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ c S A B. + +nlemma o_is_morph : ∀A:Alpha.(re A) ⇒_0 (re A) ⇒_0 (re A). +#A; napply (mk_binary_morphism … (λs1,s2:re A. o A s1 s2)); +#a; nelim a; +##[##1,2: #a' b b'; ncases a'; nnormalize; /2/ by conj; +##|#x a' b b'; ncases a'; /2/ by conj; +##|##4,5: #r1 r2 IH1 IH2 a'; ncases a'; nnormalize; /2/ by conj; +##|#r IH a'; ncases a'; nnormalize; /2/ by conj; ##] +nqed. + +unification hint 0 ≔ S:Alpha, A,B:re S; + MM ≟ mk_unary_morphism ?? + (λA:re S.mk_unary_morphism ?? (λB.o ? A B) (prop1 ?? (o_is_morph S A))) + (prop1 ?? (o_is_morph S)), + T ≟ RE S +(*--------------------------------------------------------------------------*) ⊢ + fun1 T T (fun1 T (unary_morph_setoid T T) MM A) B ≡ o S A B. + + +(* end setoids support for re *) + notation < "a \sup ⋇" non associative with precedence 90 for @{ 'pk $a}. notation > "a ^ *" non associative with precedence 75 for @{ 'pk $a}. interpretation "star" 'pk a = (k ? a). @@ -399,176 +452,6 @@ notation > "𝐋\p term 70 E" non associative with precedence 75 for @{'L_pi $E} notation "𝐋\sub(\p) term 70 E" non associative with precedence 75 for @{'L_pi $E}. interpretation "in_pl" 'L_pi E = (L_pi ? E). -(* The caml, as some patches for it *) -ncoercion setoid1_of_setoid : ∀s:setoid. setoid1 ≝ setoid1_of_setoid on _s: setoid to setoid1. - -alias symbol "hint_decl" (instance 1) = "hint_decl_CProp2". -unification hint 0 ≔ S : setoid, x,y; - SS ≟ LIST S, - TT ≟ setoid1_of_setoid SS -(*-----------------------------------------*) ⊢ - eq_list S x y ≡ eq_rel1 ? (eq1 TT) x y. - -unification hint 0 ≔ SS : setoid; - S ≟ carr SS, - TT ≟ setoid1_of_setoid (LIST SS) -(*-----------------------------------------------------------------*) ⊢ - list S ≡ carr1 TT. - -(* not as morphism *) -nlemma Not_morphism : CProp[0] ⇒_1 CProp[0]. -@(λx:CProp[0].¬ x); #a b; *; #; @; /3/; nqed. - -unification hint 0 ≔ P : CProp[0]; - A ≟ CPROP, - B ≟ CPROP, - M ≟ mk_unary_morphism1 ?? (λP.¬ P) (prop11 ?? Not_morphism) -(*------------------------*)⊢ - fun11 A B M P ≡ ¬ P. - -(* XXX Ex setoid support *) -nlemma Ex_morphism : ∀S:setoid.(S ⇒_1 CProp[0]) ⇒_1 CProp[0]. -#S; @(λP: S ⇒_1 CProp[0].Ex S P); #P Q E; @; *; #x Px; @x; ncases (E x x #); /2/; nqed. - -unification hint 0 ≔ S : setoid, P : S ⇒_1 CProp[0]; - A ≟ unary_morphism1_setoid1 (setoid1_of_setoid S) CPROP, - B ≟ CPROP, - M ≟ mk_unary_morphism1 ?? (λP: S ⇒_1 CProp[0].Ex S P) - (prop11 ?? (Ex_morphism S)) -(*------------------------*)⊢ - fun11 A B M P ≡ Ex S (fun11 S CPROP P). - -nlemma Ex_morphism_eta : ∀S:setoid.(S ⇒_1 CProp[0]) ⇒_1 CProp[0]. -#S; @(λP: S ⇒_1 CProp[0].Ex S (λx.P x)); #P Q E; @; *; #x Px; @x; ncases (E x x #); /2/; nqed. - -unification hint 0 ≔ S : setoid, P : S ⇒_1 CProp[0]; - A ≟ unary_morphism1_setoid1 (setoid1_of_setoid S) CPROP, - B ≟ CPROP, - M ≟ mk_unary_morphism1 ?? (λP: S ⇒_1 CProp[0].Ex S (λx.P x)) - (prop11 ?? (Ex_morphism_eta S)) -(*------------------------*)⊢ - fun11 A B M P ≡ Ex S (λx.fun11 S CPROP P x). - -nlemma Ex_setoid : ∀S:setoid.(S ⇒_1 CPROP) → setoid. -#T P; @ (Ex T (λx:T.P x)); @; ##[ #H1 H2; napply True |##*: //; ##] nqed. - -unification hint 0 ≔ T,P ; - S ≟ (Ex_setoid T P) -(*---------------------------*) ⊢ - Ex T (λx:T.P x) ≡ carr S. - -(* couts how many Ex we are traversing *) -ninductive counter : Type[0] ≝ - | End : counter - | Next : (bool → bool) → (* dummy arg please the notation mechanism *) - counter → counter. - -(* to rewrite terms (live in setoid) *) -nlet rec mk_P (S, T : setoid) (n : counter) on n ≝ - match n with [ End ⇒ T → CProp[0] | Next _ m ⇒ S → (mk_P S T m) ]. - -nlet rec mk_F (S, T : setoid) (n : counter) on n ≝ - match n with [ End ⇒ T | Next _ m ⇒ S → (mk_F S T m) ]. - -nlet rec mk_E (S, T : setoid) (n : counter) on n : ∀f,g : mk_F S T n. CProp[0] ≝ - match n with - [ End ⇒ λf,g:T. f = g - | Next q m ⇒ λf,g: mk_F S T (Next q m). ∀x:S.mk_E S T m (f x) (g x) ]. - -nlet rec mk_H (S, T : setoid) (n : counter) on n : -∀P1,P2: mk_P S T n.∀f,g : mk_F S T n. CProp[1] ≝ - match n with - [ End ⇒ λP1,P2:mk_P S T End.λf,g:T. f = g → P1 f =_1 P2 g - | Next q m ⇒ λP1,P2: mk_P S T (Next q m).λf,g: mk_F S T (Next q m). - ∀x:S.mk_H S T m (P1 x) (P2 x) (f x) (g x) ]. - -nlet rec mk_Ex (S, T : setoid) (n : counter) on n : -∀P: mk_P S T n.∀f : mk_F S T n. CProp[0] ≝ - match n with - [ End ⇒ λP:mk_P S T End.λf:T. P f - | Next q m ⇒ λP: mk_P S T (Next q m).λf: mk_F S T (Next q m). - ∃x:S.mk_Ex S T m (P x) (f x) ]. - -nlemma Sig_generic : ∀S,T.∀n:counter.∀P,f,g. - mk_E S T n f g → mk_H S T n P P f g → mk_Ex S T n P f =_1 mk_Ex S T n P g. -#S T n; nelim n; nnormalize; -##[ #P f g E H; /2/; -##| #q m IH P f g E H; @; *; #x Px; @x; ncases (IH … (E x) (H x)); /3/; ##] -nqed. - -(* to rewrite propositions (live in setoid1) *) -nlet rec mk_P1 (S : setoid) (T : setoid1) (n : counter) on n ≝ - match n with [ End ⇒ T → CProp[0] | Next _ m ⇒ S → (mk_P1 S T m) ]. - -nlet rec mk_F1 (S : setoid) (T : setoid1) (n : counter) on n ≝ - match n with [ End ⇒ T | Next _ m ⇒ S → (mk_F1 S T m) ]. - -nlet rec mk_E1 (S : setoid) (T : setoid1) (n : counter) on n : ∀f,g : mk_F1 S T n. CProp[1] ≝ - match n with - [ End ⇒ λf,g:T. f =_1 g - | Next q m ⇒ λf,g: mk_F1 S T (Next q m). ∀x:S.mk_E1 S T m (f x) (g x) ]. - -nlet rec mk_H1 (S : setoid) (T : setoid1) (n : counter) on n : -∀P1,P2: mk_P1 S T n.∀f,g : mk_F1 S T n. CProp[1] ≝ - match n with - [ End ⇒ λP1,P2:mk_P1 S T End.λf,g:T. f = g → P1 f =_1 P2 g - | Next q m ⇒ λP1,P2: mk_P1 S T (Next q m).λf,g: mk_F1 S T (Next q m). - ∀x:S.mk_H1 S T m (P1 x) (P2 x) (f x) (g x) ]. - -nlet rec mk_Ex1 (S : setoid) (T : setoid1) (n : counter) on n : -∀P: mk_P1 S T n.∀f : mk_F1 S T n. CProp[0] ≝ - match n with - [ End ⇒ λP:mk_P1 S T End.λf:T. P f - | Next q m ⇒ λP: mk_P1 S T (Next q m).λf: mk_F1 S T (Next q m). - ∃x:S.mk_Ex1 S T m (P x) (f x) ]. - -nlemma Sig_generic1 : ∀S,T.∀n:counter.∀P,f,g. - mk_E1 S T n f g → mk_H1 S T n P P f g → mk_Ex1 S T n P f =_1 mk_Ex1 S T n P g. -#S T n; nelim n; nnormalize; -##[ #P f g E H; /2/; -##| #q m IH P f g E H; @; *; #x Px; @x; ncases (IH … (E x) (H x)); /3/; ##] -nqed. - -(* notation "∑x1,...,xn. E / H ; P" were: - - x1...xn are bound in E and P, H is bound in P - - H is an identifier that will have the type of E in P - - P is the proof that the two existentially quantified predicates are equal*) -notation > "∑ list1 ident x sep , . term 56 E / ident nE ; term 19 H" with precedence 20 -for @{ 'Sig_gen - ${ fold right @{ 'End } rec acc @{ ('Next (λ${ident x}.${ident x}) $acc) } } - ${ fold right @{ $E } rec acc @{ λ${ident x}.$acc } } - ${ fold right @{ λ${ident nE}.$H } rec acc @{ λ${ident x}.$acc } } -}. - -interpretation "next" 'Next x y = (Next x y). -interpretation "end" 'End = End. -(*interpretation "sig_gen" 'Sig_gen n E H = (Sig_generic ?? n ??? E H).*) -interpretation "sig_gen1" 'Sig_gen n E H = (Sig_generic1 ?? n ??? E H). - -nlemma test0 : ∀S:setoid. ∀P: S ⇒_1 CPROP.∀f,g:S → S. - (∀x:S.f x = g x) → (Ex S (λw.P (f w))) =_1 (Ex S (λw.P (g w))). -#S P f g E; napply (∑w. E w / H ; ┼_1H); nqed. - -nlemma test : ∀S:setoid. ∀P: S ⇒_1 CPROP.∀f,g:S → S. - (∀x:S.f x = g x) → (Ex S (λw.P (f w)∧ True)) =_1 (Ex S (λw.P (g w)∧ True)). -#S P f g E; napply (∑w. E w / H ; (┼_1H)╪_1#); nqed. - -nlemma test_bound : ∀S:setoid. ∀e,f: S ⇒_1 CPROP. e = f → - (Ex S (λw.e w ∧ True)) =_1 (Ex S (λw.f w ∧ True)). -#S f g E; napply (.=_1 ∑x. E x x # / H ; (H ╪_1 #)); //; nqed. - -nlemma test2 : ∀S:setoid. ∀ee: S ⇒_1 S ⇒_1 CPROP. - ∀x,y:setoid1_of_setoid S.x =_1 y → - (True ∧ (Ex S (λw.ee x w ∧ True))) =_1 (True ∧ (Ex S (λw.ee y w ∧ True))). -#S m x y E; napply (.=_1 #╪_1(∑w. E / E ; ((E ╪_1 #) ╪_1 #))). //; nqed. - -nlemma test3 : ∀S:setoid. ∀ee: S ⇒_1 S ⇒_1 CPROP. - ∀x,y:setoid1_of_setoid S.x =_1 y → - ((Ex S (λw.ee x w ∧ True) ∨ True)) =_1 ((Ex S (λw.ee y w ∧ True) ∨ True)). -#S m x y E; napply (.=_1 (∑w. E / E ; ((E ╪_1 #) ╪_1 #)) ╪_1 #). //; nqed. - -(* Ex setoid support end *) - ndefinition L_pi_ext : ∀S:Alpha.∀r:pitem S.Elang S. #S r; @(𝐋\p r); #w1 w2 E; nelim r; ##[ ##1,2: /2/; @@ -742,9 +625,6 @@ nlemma erase_star : ∀S:Alpha.∀e1:pitem S.𝐋 |e1|^* = 𝐋 |e1^*|. //; nqed nlemma mem_single : ∀S:setoid.∀a,b:S. a ∈ {(b)} → a = b. #S a b; nnormalize; /2/; nqed. -notation < "[\setoid\emsp\of\emsp term 19 x]" non associative with precedence 90 for @{'mk_setoid $x}. -interpretation "mk_setoid" 'mk_setoid x = (mk_setoid x ?). - nlemma cup_sub: ∀S.∀A,B:𝛀^S.∀x. ¬ (x ∈ A) → A ∪ (B - {(x)}) = (A ∪ B) - {(x)}. #S A B x H; napply ext_set; #w; @; ##[ *; ##[ #wa; @; ##[@;//] #H2; napply H; napply (. (mem_single ??? H2)^-1╪_1#); //] @@ -763,30 +643,31 @@ nlemma subW : ∀S.∀a,b:Ω^S.∀w.w ∈ (a - b) → w ∈ a. nlemma erase_bull : ∀S:Alpha.∀a:pitem S. |\fst (•a)| = |a|. #S a; nelim a; // by {}; -##[ #e1 e2 IH1 IH2; nchange in ⊢ (???%) with (|e1| · |e2|); - -finqui: manca · morfismo, oppure un lemma che dice che == è come Leibnitz. - - nrewrite < IH1; nrewrite < IH2; - nchange in ⊢ (??(??%)?) with (\fst (•e1 ⊙ 〈e2,false〉)); - ncases (•e1); #e3 b; ncases b; nnormalize; - ##[ ncases (•e2); //; ##| nrewrite > IH2; //] -##| #e1 e2 IH1 IH2; nchange in ⊢ (???%) with (.|e1| + .|e2|); - nrewrite < IH2; nrewrite < IH1; - nchange in ⊢ (??(??%)?) with (\fst (•e1 ⊕ •e2)); +##[ #e1 e2 IH1 IH2; + napply (?^-1); + napply (.=_0 (IH1^-1)╪_0 (IH2^-1)); + nchange in match (•(e1 · ?)) with (?⊙?); + ncases (•e1); #e3 b; ncases b; ##[ nnormalize; ncases (•e2); /3/ by refl, conj] + napply (.=_0 #╪_0 (IH2)); //; +##| #e1 e2 IH1 IH2; napply (?^-1); + napply (.=_0 (IH1^-1)╪_0(IH2^-1)); + nchange in match (•(e1+?)) with (?⊕?); ncases (•e1); ncases (•e2); //] -##| #e IH; nchange in ⊢ (???%) with (.|e|^* ); nrewrite < IH; - nchange in ⊢ (??(??%)?) with (\fst (•e))^*; //; ##] nqed. -nlemma eta_lp : ∀S.∀p:pre S.𝐋\p p = 𝐋\p 〈\fst p, \snd p〉. +nlemma eta_lp : ∀S:Alpha.∀p:pre S. 𝐋\p p = 𝐋\p 〈\fst p, \snd p〉. #S p; ncases p; //; nqed. -nlemma epsilon_dot: ∀S.∀p:word S → Prop. {[]} · p = p. -#S e; napply extP; #w; nnormalize; @; ##[##2: #Hw; @[]; @w; /3/; ##] -*; #w1; *; #w2; *; *; #defw defw1 Hw2; nrewrite < defw; nrewrite < defw1; +(* ext_carr non applica *) +nlemma epsilon_dot: ∀S:Alpha.∀p:Elang S. {[]} · (ext_carr ? p) = p. +#S e; napply ext_set; #w; @; ##[##2: #Hw; @[]; @w; @; //; @; //; napply #; (* XXX auto *) ##] +*; #w1; *; #w2; *; *; #defw defw1 Hw2; +napply (. defw╪_1#); +napply (. (defw1^-1 ╪_0 #)╪_1#); (* manca @ morfismo *) napply Hw2; nqed. +STOP + (* theorem 16: 1 → 3 *) nlemma odot_dot_aux : ∀S.∀e1,e2: pre S. 𝐋\p (•(\fst e2)) = 𝐋\p (\fst e2) ∪ 𝐋 .|\fst e2| → diff --git a/helm/software/matita/nlibrary/sets/setoids.ma b/helm/software/matita/nlibrary/sets/setoids.ma index e593ea7d5..376edc0ce 100644 --- a/helm/software/matita/nlibrary/sets/setoids.ma +++ b/helm/software/matita/nlibrary/sets/setoids.ma @@ -28,6 +28,9 @@ unification hint 0 ≔ R : setoid; (* ---------------------------------------- *) ⊢ setoid ≡ force1 ? MR lock. +notation < "[\setoid\ensp\of term 19 x]" non associative with precedence 90 for @{'mk_setoid $x}. +interpretation "mk_setoid" 'mk_setoid x = (mk_setoid x ?). + interpretation "setoid eq" 'eq t x y = (eq_rel ? (eq0 t) x y). notation > "hvbox(a break =_0 b)" non associative with precedence 45 @@ -80,7 +83,7 @@ nlemma unary_morph_eq: ∀A,B.∀f,g:A ⇒_0 B. (∀x. f x = g x) → f = g. nlemma mk_binary_morphism: ∀A,B,C: setoid. ∀f: A → B → C. (∀a,a',b,b'. a=a' → b=b' → f a b = f a' b') → A ⇒_0 (unary_morph_setoid B C). - #A; #B; #C; #f; #H; @ [ #x; @ (f x) ] #a; #a'; #Ha [##2: napply unary_morph_eq; #y] + #A; #B; #C; #f; #H; @; ##[ #x; @ (f x) ] #a; #a'; #Ha [##2: napply unary_morph_eq; #y] /2/. nqed. @@ -96,10 +99,10 @@ ndefinition comp_unary_morphisms: nqed. unification hint 0 ≔ o1,o2,o3:setoid,f:o2 ⇒_0 o3,g:o1 ⇒_0 o2; - R ≟ mk_unary_morphism ?? (composition … f g) + R ≟ mk_unary_morphism ?? (composition ??? f g) (prop1 ?? (comp_unary_morphisms o1 o2 o3 f g)) (* -------------------------------------------------------------------- *) ⊢ - fun1 ?? R ≡ (composition … f g). + fun1 ?? R ≡ (composition ??? f g). ndefinition comp_binary_morphisms: ∀o1,o2,o3.(o2 ⇒_0 o3) ⇒_0 ((o1 ⇒_0 o2) ⇒_0 (o1 ⇒_0 o3)). diff --git a/helm/software/matita/nlibrary/sets/setoids1.ma b/helm/software/matita/nlibrary/sets/setoids1.ma index 4ab57d568..48b7d3fcc 100644 --- a/helm/software/matita/nlibrary/sets/setoids1.ma +++ b/helm/software/matita/nlibrary/sets/setoids1.ma @@ -27,10 +27,21 @@ unification hint 0 ≔ R : setoid1; (* ---------------------------------------- *) ⊢ setoid1 ≡ force2 ? MR lock. +notation < "[\setoid1\ensp\of term 19 x]" non associative with precedence 90 for @{'mk_setoid1 $x}. +interpretation "mk_setoid1" 'mk_setoid1 x = (mk_setoid1 x ?). + +(* da capire se mettere come coercion *) ndefinition setoid1_of_setoid: setoid → setoid1. #s; @ (carr s); @ (eq0…) (refl…) (sym…) (trans…); nqed. + +alias symbol "hint_decl" (instance 1) = "hint_decl_Type2". +unification hint 0 ≔ A,x,y +(*-----------------------------------------------*) ⊢ + eq_rel ? (eq0 A) x y ≡ eq_rel1 ? (eq1 (setoid1_of_setoid A)) x y. +(* XXX capire come mai questa hint non funziona se porto su (setoid1_of_setoid A) *) + interpretation "setoid1 eq" 'eq t x y = (eq_rel1 ? (eq1 t) x y). interpretation "setoid eq" 'eq t x y = (eq_rel ? (eq0 t) x y). @@ -102,10 +113,10 @@ ndefinition comp1_unary_morphisms: nqed. unification hint 0 ≔ o1,o2,o3:setoid1,f:o2 ⇒_1 o3,g:o1 ⇒_1 o2; - R ≟ (mk_unary_morphism1 ?? (composition1 … f g) + R ≟ (mk_unary_morphism1 ?? (composition1 ??? f g) (prop11 ?? (comp1_unary_morphisms o1 o2 o3 f g))) (* -------------------------------------------------------------------- *) ⊢ - fun11 ?? R ≡ (composition1 … f g). + fun11 ?? R ≡ (composition1 ??? f g). ndefinition comp1_binary_morphisms: ∀o1,o2,o3. (o2 ⇒_1 o3) ⇒_1 ((o1 ⇒_1 o2) ⇒_1 (o1 ⇒_1 o3)). diff --git a/helm/software/matita/nlibrary/sets/sets.ma b/helm/software/matita/nlibrary/sets/sets.ma index dcb740921..aae969ed2 100644 --- a/helm/software/matita/nlibrary/sets/sets.ma +++ b/helm/software/matita/nlibrary/sets/sets.ma @@ -34,6 +34,10 @@ interpretation "intersect" 'intersects U V = (intersect ? U V). ndefinition union ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∨ x ∈ V }. interpretation "union" 'union U V = (union ? U V). +ndefinition substract ≝ λA.λU,V:Ω^A.{ x | x ∈ U ∧ ¬ x ∈ V }. +interpretation "substract" 'minus U V = (substract ? U V). + + ndefinition big_union ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∃i. i ∈ T ∧ x ∈ f i }. ndefinition big_intersection ≝ λA,B.λT:Ω^A.λf:A → Ω^B.{ x | ∀i. i ∈ T → x ∈ f i }. @@ -55,6 +59,9 @@ nqed. include "sets/setoids1.ma". +ndefinition singleton ≝ λA:setoid.λa:A.{ x | a = x }. +interpretation "singl" 'singl a = (singleton ? a). + (* this has to be declared here, so that it is combined with carr *) ncoercion full_set : ∀A:Type[0]. Ω^A ≝ full_set on A: Type[0] to (Ω^?). @@ -138,13 +145,7 @@ nlemma subseteq_is_morph: ∀A. 𝛀^A ⇒_1 𝛀^A ⇒_1 CPROP. #a; #a'; #b; #b'; *; #H1; #H2; *; /5/ by mk_iff, sym1, subseteq_trans; nqed. -alias symbol "hint_decl" (instance 1) = "hint_decl_Type2". -unification hint 0 ≔ A,x,y -(*-----------------------------------------------*) ⊢ - eq_rel ? (eq0 A) x y ≡ eq_rel1 ? (eq1 (setoid1_of_setoid A)) x y. - -(* XXX capire come mai questa hint non funziona se porto su (setoid1_of_setoid A) *) - +(* hints for ∩ *) nlemma intersect_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. #S A B; @ (A ∩ B); #x y Exy; @; *; #H1 H2; @; ##[##1,2: napply (. Exy^-1‡#); nassumption; @@ -195,6 +196,8 @@ unification hint 1 ≔ (* ------------------------------------------------------*) ⊢ ext_carr AA (R B C) ≡ intersect A BB CC. + +(* hints for ∩ *) nlemma union_is_morph : ∀A. Ω^A ⇒_1 (Ω^A ⇒_1 Ω^A). #X; napply (mk_binary_morphism1 … (λA,B.A ∪ B)); #A1 A2 B1 B2 EA EB; napply ext_set; #x; @@ -245,6 +248,92 @@ unification hint 1 ≔ (*------------------------------------------------------*) ⊢ ext_carr AA (R B C) ≡ union A BB CC. + +(* hints for - *) +nlemma substract_is_morph : ∀A. Ω^A ⇒_1 (Ω^A ⇒_1 Ω^A). +#X; napply (mk_binary_morphism1 … (λA,B.A - B)); +#A1 A2 B1 B2 EA EB; napply ext_set; #x; +nchange in match (x ∈ (A1 - B1)) with (?∧?); +napply (.= (set_ext ??? EA x)‡#); @; *; #H H1; @; //; #H2; napply H1; +##[ napply (. (set_ext ??? EB x)); ##| napply (. (set_ext ??? EB^-1 x)); ##] //; +nqed. + +nlemma substract_is_ext: ∀A. 𝛀^A → 𝛀^A → 𝛀^A. + #S A B; @ (A - B); #x y Exy; @; *; #H1 H2; @; ##[##2,4: #H3; napply H2] +##[##1,4: napply (. Exy╪_1#); // ##|##2,3: napply (. Exy^-1╪_1#); //] +nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ + A : setoid, B,C : 𝛀^A; + R ≟ (mk_ext_powerclass ? (B - C) (ext_prop ? (substract_is_ext ? B C))) +(*-------------------------------------------------------------------------*) ⊢ + ext_carr A R ≡ substract ? (ext_carr ? B) (ext_carr ? C). + +unification hint 0 ≔ S:Type[0], A,B:Ω^S; + MM ≟ mk_unary_morphism1 ?? + (λA.mk_unary_morphism1 ?? (λB.A - B) (prop11 ?? (substract_is_morph S A))) + (prop11 ?? (substract_is_morph S)) +(*--------------------------------------------------------------------------*) ⊢ + fun11 ?? (fun11 ?? MM A) B ≡ A - B. + +nlemma substract_is_ext_morph:∀A.𝛀^A ⇒_1 𝛀^A ⇒_1 𝛀^A. +#A; napply (mk_binary_morphism1 … (substract_is_ext …)); +#x1 x2 y1 y2 Ex Ey; napply (prop11 … (substract_is_morph A)); nassumption. +nqed. + +unification hint 1 ≔ + AA : setoid, B,C : 𝛀^AA; + A ≟ carr AA, + R ≟ (mk_unary_morphism1 ?? + (λS:𝛀^AA. + mk_unary_morphism1 ?? + (λS':𝛀^AA. + mk_ext_powerclass AA (S - S') (ext_prop AA (substract_is_ext ? S S'))) + (prop11 ?? (substract_is_ext_morph AA S))) + (prop11 ?? (substract_is_ext_morph AA))) , + BB ≟ (ext_carr ? B), + CC ≟ (ext_carr ? C) +(*------------------------------------------------------*) ⊢ + ext_carr AA (R B C) ≡ substract A BB CC. + +(* hints for {x} *) +nlemma single_is_morph : ∀A:setoid. (setoid1_of_setoid A) ⇒_1 Ω^A. +#X; @; ##[ napply (λx.{(x)}); ##] +#a b E; napply ext_set; #x; @; #H; /3/; nqed. + +nlemma single_is_ext: ∀A:setoid. A → 𝛀^A. +#X a; @; ##[ napply ({(a)}); ##] #x y E; @; #H; /3/; nqed. + +alias symbol "hint_decl" = "hint_decl_Type1". +unification hint 0 ≔ A : setoid, a:A; + R ≟ (mk_ext_powerclass ? {(a)} (ext_prop ? (single_is_ext ? a))) +(*-------------------------------------------------------------------------*) ⊢ + ext_carr A R ≡ singleton A a. + +unification hint 0 ≔ A:setoid, a:A; + MM ≟ mk_unary_morphism1 ?? + (λa:setoid1_of_setoid A.{(a)}) (prop11 ?? (single_is_morph A)) +(*--------------------------------------------------------------------------*) ⊢ + fun11 ?? MM a ≡ {(a)}. + +nlemma single_is_ext_morph:∀A:setoid.(setoid1_of_setoid A) ⇒_1 𝛀^A. +#A; @; ##[ #a; napply (single_is_ext ? a); ##] #a b E; @; #x; /3/; nqed. + +unification hint 1 ≔ + AA : setoid, a: AA; + R ≟ mk_unary_morphism1 ?? + (λa:setoid1_of_setoid AA. + mk_ext_powerclass AA {(a)} (ext_prop ? (single_is_ext AA a))) + (prop11 ?? (single_is_ext_morph AA)) +(*------------------------------------------------------*) ⊢ + ext_carr AA (R a) ≡ singleton AA a. + + + + + + (* alias symbol "hint_decl" = "hint_decl_Type2". unification hint 0 ≔ -- 2.39.2