From 924e808f1bc958a2d3c8ac05c96aeb8bc1f6d791 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Wed, 30 Dec 2009 17:41:59 +0000 Subject: [PATCH] Almost done (up to definition of category). --- .../matita/nlibrary/overlap/o-algebra.ma | 96 +++++++++---------- 1 file changed, 48 insertions(+), 48 deletions(-) diff --git a/helm/software/matita/nlibrary/overlap/o-algebra.ma b/helm/software/matita/nlibrary/overlap/o-algebra.ma index eae842c44..ce922a38a 100644 --- a/helm/software/matita/nlibrary/overlap/o-algebra.ma +++ b/helm/software/matita/nlibrary/overlap/o-algebra.ma @@ -430,60 +430,60 @@ nlemma lemma_10_2_a: ∀S,T.∀R:ORelation S T.∀p. p ≤ R⎻* (R⎻ p). napply oa_leq_refl. nqed. -lemma lemma_10_2_b: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* p) ≤ p. - intros; - apply (. (or_prop2 : ?)); - apply oa_leq_refl. -qed. +nlemma lemma_10_2_b: ∀S,T.∀R:ORelation S T.∀p. R⎻ (R⎻* p) ≤ p. + #S; #T; #R; #p; + napply (. (or_prop2 …)); + napply oa_leq_refl. +nqed. -lemma lemma_10_2_c: ∀S,T.∀R:arrows2 OA S T.∀p. p ≤ R* (R p). - intros; - apply (. (or_prop1 : ?)^-1); - apply oa_leq_refl. -qed. +nlemma lemma_10_2_c: ∀S,T.∀R:ORelation S T.∀p. p ≤ R* (R p). + #S; #T; #R; #p; + napply (. (or_prop1 … p …)^-1); + napply oa_leq_refl. +nqed. -lemma lemma_10_2_d: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* p) ≤ p. - intros; - apply (. (or_prop1 : ?)); - apply oa_leq_refl. -qed. +nlemma lemma_10_2_d: ∀S,T.∀R:ORelation S T.∀p. R (R* p) ≤ p. + #S; #T; #R; #p; + napply (. (or_prop1 …)); + napply oa_leq_refl. +nqed. -lemma lemma_10_3_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻ (R⎻* (R⎻ p)) = R⎻ p. - intros; apply oa_leq_antisym; - [ apply lemma_10_2_b; - | apply f_minus_image_monotone; - apply lemma_10_2_a; ] -qed. +nlemma lemma_10_3_a: ∀S,T.∀R:ORelation S T.∀p. R⎻ (R⎻* (R⎻ p)) = R⎻ p. + #S; #T; #R; #p; napply oa_leq_antisym + [ napply lemma_10_2_b + | napply f_minus_image_monotone; + napply lemma_10_2_a ] +nqed. -lemma lemma_10_3_b: ∀S,T.∀R:arrows2 OA S T.∀p. R* (R (R* p)) = R* p. - intros; apply oa_leq_antisym; - [ apply f_star_image_monotone; - apply (lemma_10_2_d ?? R p); - | apply lemma_10_2_c; ] -qed. +nlemma lemma_10_3_b: ∀S,T.∀R:ORelation S T.∀p. R* (R (R* p)) = R* p. + #S; #T; #R; #p; napply oa_leq_antisym + [ napply f_star_image_monotone; + napply (lemma_10_2_d ?? R p) + | napply lemma_10_2_c ] +nqed. -lemma lemma_10_3_c: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R p)) = R p. - intros; apply oa_leq_antisym; - [ apply lemma_10_2_d; - | apply f_image_monotone; - apply (lemma_10_2_c ?? R p); ] -qed. +nlemma lemma_10_3_c: ∀S,T.∀R:ORelation S T.∀p. R (R* (R p)) = R p. + #S; #T; #R; #p; napply oa_leq_antisym + [ napply lemma_10_2_d + | napply f_image_monotone; + napply (lemma_10_2_c ?? R p) ] +nqed. -lemma lemma_10_3_d: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* p)) = R⎻* p. - intros; apply oa_leq_antisym; - [ apply f_minus_star_image_monotone; - apply (lemma_10_2_b ?? R p); - | apply lemma_10_2_a; ] -qed. +nlemma lemma_10_3_d: ∀S,T.∀R:ORelation S T.∀p. R⎻* (R⎻ (R⎻* p)) = R⎻* p. + #S; #T; #R; #p; napply oa_leq_antisym + [ napply f_minus_star_image_monotone; + napply (lemma_10_2_b ?? R p) + | napply lemma_10_2_a ] +nqed. -lemma lemma_10_4_a: ∀S,T.∀R:arrows2 OA S T.∀p. R⎻* (R⎻ (R⎻* (R⎻ p))) = R⎻* (R⎻ p). - intros; apply (†(lemma_10_3_a ?? R p)); -qed. +nlemma lemma_10_4_a: ∀S,T.∀R:ORelation S T.∀p. R⎻* (R⎻ (R⎻* (R⎻ p))) = R⎻* (R⎻ p). + #S; #T; #R; #p; napply (†(lemma_10_3_a …)). +nqed. -lemma lemma_10_4_b: ∀S,T.∀R:arrows2 OA S T.∀p. R (R* (R (R* p))) = R (R* p). -intros; unfold in ⊢ (? ? ? % %); apply (†(lemma_10_3_b ?? R p)); -qed. +nlemma lemma_10_4_b: ∀S,T.∀R:ORelation S T.∀p. R (R* (R (R* p))) = R (R* p). + #S; #T; #R; #p; napply (†(lemma_10_3_b …)); +nqed. -lemma oa_overlap_sym': ∀o:OA.∀U,V:o. (U >< V) = (V >< U). - intros; split; intro; apply oa_overlap_sym; assumption. -qed. \ No newline at end of file +nlemma oa_overlap_sym': ∀o:OAlgebra.∀U,V:o. (U >< V) = (V >< U). + #o; #U; #V; @; #H; napply oa_overlap_sym; nassumption. +nqed. \ No newline at end of file -- 2.39.2