From 98f9ba9a1b0e6ffb2c8b539a3b6b0c31eba6c65e Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Fri, 26 Mar 2010 17:27:53 +0000 Subject: [PATCH] (Co)Inductively Generated Formal Topologies (not only basic ones) From: sacerdot --- .../software/matita/nlibrary/arithmetics/R.ma | 104 +++++++++++++++--- 1 file changed, 91 insertions(+), 13 deletions(-) diff --git a/helm/software/matita/nlibrary/arithmetics/R.ma b/helm/software/matita/nlibrary/arithmetics/R.ma index 5cbb571b6..9087304bd 100644 --- a/helm/software/matita/nlibrary/arithmetics/R.ma +++ b/helm/software/matita/nlibrary/arithmetics/R.ma @@ -21,10 +21,12 @@ naxiom Qplus: Q → Q → Q. naxiom Qtimes: Q → Q → Q. naxiom Qdivides: Q → Q → Q. naxiom Qle : Q → Q → Prop. +naxiom Qlt: Q → Q → Prop. interpretation "Q plus" 'plus x y = (Qplus x y). interpretation "Q times" 'times x y = (Qtimes x y). interpretation "Q divides" 'divide x y = (Qdivides x y). interpretation "Q le" 'leq x y = (Qle x y). +interpretation "Q lt" 'lt x y = (Qlt x y). naxiom Qtimes_plus: ∀n,m:nat.∀q:Q. (n * q + m * q) = (plus n m) * q. naxiom Qmult_one: ∀q:Q. 1 * q = q. naxiom Qdivides_mult: ∀q1,q2. (q1 * q2) / q1 = q2. @@ -45,12 +47,6 @@ ntheorem lem1: ∀n:nat.∀q:Q. (n * q + q) = (S n) * q. #n; #q; ncut (plus n 1 = S n);##[//##] //; nqed. -(*ndefinition aaa ≝ Qtimes_distr. -ndefinition bbb ≝ Qmult_one. -ndefinition ccc ≝ Qdivides_mult.*) - -naxiom disjoint: Q → Q → Q → Q → bool. - ncoinductive locate : Q → Q → Prop ≝ L: ∀l,l',u',u. l≤l' → u'≤((2 * l + u) / 3) → locate l' u' → locate l u | H: ∀l,l',u',u. ((l + 2 * u) / 3)≤l' → u'≤ u → locate l' u' → locate l u. @@ -71,18 +67,15 @@ nqed. ndefinition R ≝ ∃l,u:Q. locate l u. -nlet corec Q_to_locate q : locate q q ≝ L q q q q …. - //; - ncut (q = (2*q+q)/3) - [##2: #H; ncases H; //; (*NOT WORKING: nrewrite > H;*) napply Q_to_locate - | nrewrite < (Qdivides_mult 3 q) in ⊢ (? ? % ?);// - ] +nlet corec Q_to_locate q : locate q q ≝ L q q q q … (Q_to_locate q). + //; nrewrite < (Qdivides_mult 3 q) in ⊢ (? % ?); //. nqed. ndefinition Q_to_R : Q → R. #q; @ q; @q; //. nqed. +(* nlet corec locate_add (l1,u1:?) (r1: locate l1 u1) (l2,u2:?) (r2: locate l2 u2) : locate (l1 + l2) (u1 + u2) ≝ ?. ninversion r1; ninversion r2; #l2'; #u2'; #leq2l; #leq2u; #r2; @@ -103,4 +96,89 @@ nlet corec apart (l1,u1) (r1: locate l1 u1) (l2,u2) (r2: locate l2 u2) : CProp[0 match disjoint l1 u1 l2 u2 with [ true ⇒ True | false ⇒ -*) \ No newline at end of file +*) + +include "topology/igft.ma". +include "datatypes/pairs.ma". +include "datatypes/sums.ma". + +nrecord pre_order (A: Type[0]) : Type[1] ≝ + { pre_r :2> A → A → CProp[0]; + pre_sym: reflexive … pre_r; + pre_trans: transitive … pre_r + }. + +nrecord Ax_pro : Type[1] ≝ + { AAx :> Ax; + Aleq: pre_order AAx + }. + +interpretation "Ax_pro leq" 'leq x y = (pre_r ? (Aleq ?) x y). + +(*CSC: per auto per sotto, ma non sembra aiutare *) +nlemma And_elim1: ∀A,B. A ∧ B → A. + #A; #B; *; //. +nqed. + +nlemma And_elim2: ∀A,B. A ∧ B → B. + #A; #B; *; //. +nqed. +(*CSC: /fine per auto per sotto *) + +ndefinition Rax : Ax_pro. + @ + [ @ (Q × Q) + [ #p; napply (unit + sigma … (λc. fst … p < fst … c ∧ fst … c < snd … c ∧ snd … c < snd … p)) + | #c; * + [ #_; napply {c' | fst … c < fst … c' ∧ snd … c' < snd … c} + | *; #c'; #_; napply {d' | fst … d' = fst … c ∧ snd … d' = fst … c' + ∨ fst … d' = snd … c' ∧ snd … d' = snd … c } ]##] +##| @ (λc,d. fst … d ≤ fst … c ∧ snd … c ≤ snd … d) + [ /2/ + | nnormalize; #z; #x; #y; *; #H1; #H2; *; /3/; (*CSC: perche' non va? *) ##] +nqed. + +ndefinition downarrow: ∀S:Ax_pro. Ω \sup S → Ω \sup S ≝ + λS:Ax_pro.λU:Ω ^S.{a | ∃b:S. b ∈ U ∧ a ≤ b}. + +interpretation "downarrow" 'downarrow a = (downarrow ? a). + +ndefinition fintersects: ∀S:Ax_pro. Ω \sup S → Ω \sup S → Ω \sup S ≝ + λS.λU,V. ↓U ∩ ↓V. + +interpretation "fintersects" 'fintersects U V = (fintersects ? U V). + +ndefinition singleton ≝ λA.λa:A.{b | b=a}. + +interpretation "singleton" 'singl a = (singleton ? a). + +ninductive ftcover (A : Ax_pro) (U : Ω^A) : A → CProp[0] ≝ +| ftreflexivity : ∀a. a ∈ U → ftcover A U a +| ftleqinfinity : ∀a,b. a ≤ b → ∀i. (∀x. x ∈ 𝐂 b i ↓ (singleton … a) → ftcover A U x) → ftcover A U a +| ftleqleft : ∀a,b. a ≤ b → ftcover A U b → ftcover A U a. + +interpretation "ftcovers" 'covers a U = (ftcover ? U a). + +ntheorem ftinfinity: ∀A: Ax_pro. ∀U: Ω^A. ∀a. ∀i. (∀x. x ∈ 𝐂 a i → x ◃ U) → a ◃ U. + #A; #U; #a; #i; #H; + napply (ftleqinfinity … a … i); //; + #x; *; *; #b; *; #H1; #H2; #H3; napply (ftleqleft … b); //; + napply H; napply H1 (*CSC: auto non va! *). +nqed. + +ncoinductive ftfish (A : Ax_pro) (F : Ω^A) : A → CProp[0] ≝ +| ftfish : ∀a. + a ∈ F → + (*(∀i:𝐈 a .∃b. b ∈ 𝐂 a i ∧ ftfish A F b) →*) + (∀b. a ≤ b → ftfish A F b) → + (∀b. a ≤ b → ∀i:𝐈 b. ∃x. x ∈ 𝐂 b i ↓ (singleton … a) ∧ ftcover A F x) → + ftfish A F a. + +ntheorem + +interpretation "fish" 'fish a U = (fish ? U a). + +alias symbol "I" (instance 6) = "I". +ntheorem ftcoinfinity: ∀A: Ax_pro. ∀F: Ω^A. ∀a. a ⋉ F → (∀i: 𝐈 a. ∃b. b ∈ 𝐂 a i ∧ b ⋉ F). + #A; #F; #a; *; #b; #H; #H1; #i; @ a; @; //; + ncases H; \ No newline at end of file -- 2.39.2