From a203c2900bfe3a9d9f1a845641863f9f3cbcac5e Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Mon, 20 Feb 2006 15:05:37 +0000 Subject: [PATCH] Finished one lemma (after many bug fixes here and there). --- matita/library/algebra/finite_groups.ma | 6 +-- matita/library/algebra/groups.ma | 58 +++++++++++++++---------- matita/library/algebra/monoids.ma | 2 +- matita/library/algebra/semigroups.ma | 2 +- 4 files changed, 40 insertions(+), 28 deletions(-) diff --git a/matita/library/algebra/finite_groups.ma b/matita/library/algebra/finite_groups.ma index 2f80525e7..2b731d302 100644 --- a/matita/library/algebra/finite_groups.ma +++ b/matita/library/algebra/finite_groups.ma @@ -513,7 +513,7 @@ cut (∀n.n ≤ order ? (is_finite_enumerable G) → ∃m.f m = n); clearbody GOGO; rewrite < HH in GOGO; rewrite < HH in GOGO:(? ? % ?); - rewrite > (associative ? G) in GOGO; + rewrite > (op_associative ? G) in GOGO; letin GaGa ≝ (H ? ? ? GOGO); clearbody GaGa; clear GOGO; @@ -524,13 +524,13 @@ cut (∀n.n ≤ order ? (is_finite_enumerable G) → ∃m.f m = n); letin GaxGax ≝ (refl_eq ? (G \sub a ·x)); clearbody GaxGax; rewrite < GaGa in GaxGax:(? ? % ?); - rewrite > (associative ? (semigroup_properties G)) in GaxGax; + rewrite > (op_associative ? (semigroup_properties G)) in GaxGax; apply (H ? ? ? GaxGax) | unfold is_right_unit; intro; letin GaxGax ≝ (refl_eq ? (x·G \sub a)); clearbody GaxGax; rewrite < GaGa in GaxGax:(? ? % ?); - rewrite < (associative ? (semigroup_properties G)) in GaxGax; + rewrite < (op_associative ? (semigroup_properties G)) in GaxGax; apply (H1 ? ? ? GaxGax) ] ] diff --git a/matita/library/algebra/groups.ma b/matita/library/algebra/groups.ma index 1301d34f9..57c43d4ae 100644 --- a/matita/library/algebra/groups.ma +++ b/matita/library/algebra/groups.ma @@ -76,8 +76,8 @@ intros (x y z); rewrite < (e_is_left_unit ? G); rewrite < (e_is_left_unit ? G z); rewrite < (inv_is_left_inverse ? G x); -rewrite > (associative ? (is_semi_group ? ( G))); -rewrite > (associative ? (is_semi_group ? ( G))); +rewrite > (op_associative ? G); +rewrite > (op_associative ? G); apply eq_f; assumption. qed. @@ -90,16 +90,16 @@ unfold right_cancellable; unfold injective; simplify;fold simplify (op G); intros (x y z); -rewrite < (e_is_right_unit ? ( G)); -rewrite < (e_is_right_unit ? ( G) z); +rewrite < (e_is_right_unit ? G); +rewrite < (e_is_right_unit ? G z); rewrite < (inv_is_right_inverse ? G x); -rewrite < (associative ? (is_semi_group ? ( G))); -rewrite < (associative ? (is_semi_group ? ( G))); +rewrite < (op_associative ? G); +rewrite < (op_associative ? G); rewrite > H; reflexivity. qed. -theorem inv_inv: ∀G:Group. ∀x:G. x \sup -1 \sup -1 = x. +theorem eq_inv_inv_x_x: ∀G:Group. ∀x:G. x \sup -1 \sup -1 = x. intros; apply (eq_op_x_y_op_z_y_to_eq ? (x \sup -1)); rewrite > (inv_is_right_inverse ? G); @@ -128,7 +128,7 @@ theorem eq_opxy_z_to_eq_x_opzinvy: ∀G:Group. ∀x,y,z:G. x·y=z → x = z·y \sup -1. intros; apply (eq_op_x_y_op_z_y_to_eq ? y); -rewrite > (associative ? G); +rewrite > (op_associative ? G); rewrite > (inv_is_left_inverse ? G); rewrite > (e_is_right_unit ? G); assumption. @@ -138,9 +138,9 @@ theorem eq_opxy_z_to_eq_y_opinvxz: ∀G:Group. ∀x,y,z:G. x·y=z → y = x \sup -1·z. intros; apply (eq_op_x_y_op_x_z_to_eq ? x); -rewrite < (associative ? G); +rewrite < (op_associative ? G); rewrite > (inv_is_right_inverse ? G); -rewrite > (e_is_left_unit ? (is_monoid ? G)); +rewrite > (e_is_left_unit ? G); assumption. qed. @@ -149,8 +149,8 @@ theorem eq_inv_op_x_y_op_inv_y_inv_x: intros; apply (eq_op_x_y_op_z_y_to_eq ? (x·y)); rewrite > (inv_is_left_inverse ? G); -rewrite < (associative ? G); -rewrite > (associative ? G (y \sup -1)); +rewrite < (op_associative ? G); +rewrite > (op_associative ? G (y \sup -1)); rewrite > (inv_is_left_inverse ? G); rewrite > (e_is_right_unit ? G); rewrite > (inv_is_left_inverse ? G); @@ -173,9 +173,9 @@ interpretation "Morphism image" 'morimage f x = theorem morphism_to_eq_f_1_1: ∀G,G'.∀f:morphism G G'.f˜1 = 1. intros; -apply (eq_op_x_y_op_z_y_to_eq G' (f˜1)); -rewrite > (e_is_left_unit ? G' ?); -rewrite < (f_morph ? ? f); +apply (eq_op_x_y_op_z_y_to_eq ? (f˜1)); +rewrite > (e_is_left_unit ? G'); +rewrite < f_morph; rewrite > (e_is_left_unit ? G); reflexivity. qed. @@ -184,9 +184,9 @@ theorem eq_image_inv_inv_image: ∀G,G'.∀f:morphism G G'. ∀x.f˜(x \sup -1) = (f˜x) \sup -1. intros; -apply (eq_op_x_y_op_z_y_to_eq G' (f˜x)); +apply (eq_op_x_y_op_z_y_to_eq ? (f˜x)); rewrite > (inv_is_left_inverse ? G'); -rewrite < (f_morph ? ? f); +rewrite < f_morph; rewrite > (inv_is_left_inverse ? G); apply (morphism_to_eq_f_1_1 ? ? f). qed. @@ -199,9 +199,15 @@ record monomorphism (G,G':Group) : Type ≝ (* Subgroups *) record subgroup (G:Group) : Type ≝ - { group: Group; + { group:> Group; embed:> monomorphism group G }. + +notation < "G" +for @{ 'type_of_subgroup $G }. + +interpretation "Type_of_subgroup coercion" 'type_of_subgroup G = + (cic:/matita/algebra/groups/Type_of_subgroup.con _ G). notation "hvbox(x \sub H)" with precedence 79 for @{ 'subgroupimage $H $x }. @@ -263,21 +269,27 @@ intros; unfold left_coset_eq; simplify in ⊢ (? → ? ? ? (? ? % ?)); simplify in ⊢ (? → ? ? ? (? ? ? (? ? ? (? ? %) ?))); -simplify in ⊢ (? % → ?); +simplify in ⊢ (? ? % → ?); intros; unfold member_of_left_coset; simplify in ⊢ (? ? (λy:?.? ? ? (? ? ? (? ? ? (? ? %) ?)))); -simplify in ⊢ (? ? (λy:? %.?)); +simplify in ⊢ (? ? (λy:? ? %.?)); simplify in ⊢ (? ? (λy:?.? ? ? (? ? % ?))); unfold member_of_subgroup in H1; elim H1; clear H1; exists; [ apply (a\sup-1 · x1) -| rewrite > (f_morph ? ? (morphism ? ? H)); - rewrite > (eq_image_inv_inv_image ? ? +| rewrite > f_morph; + rewrite > eq_image_inv_inv_image; rewrite < H2; - rewrite > (eq_inv_op_x_y_op_inv_y_inv_x ? ? ? ? H2); + rewrite > eq_inv_op_x_y_op_inv_y_inv_x; + rewrite > eq_inv_inv_x_x; + rewrite < (op_associative ? G); + rewrite < (op_associative ? G); + rewrite > (inv_is_right_inverse ? G); + rewrite > (e_is_left_unit ? G); + reflexivity ]. qed. diff --git a/matita/library/algebra/monoids.ma b/matita/library/algebra/monoids.ma index fc6c8f956..63b6430ec 100644 --- a/matita/library/algebra/monoids.ma +++ b/matita/library/algebra/monoids.ma @@ -75,7 +75,7 @@ theorem is_left_inverse_to_is_right_inverse_to_eq: generalize in match (eq_f ? ? (λy.y·(r x)) ? ? H2); simplify; fold simplify (op M); intro; clear H2; - generalize in match (associative ? (is_semi_group ? (monoid_properties M))); + generalize in match (op_associative ? (is_semi_group ? (monoid_properties M))); intro; rewrite > H2 in H3; clear H2; rewrite > H1 in H3; diff --git a/matita/library/algebra/semigroups.ma b/matita/library/algebra/semigroups.ma index 5b461d1a4..73099286b 100644 --- a/matita/library/algebra/semigroups.ma +++ b/matita/library/algebra/semigroups.ma @@ -37,7 +37,7 @@ interpretation "magma operation" 'magma_op a b = (* Semigroups *) record isSemiGroup (M:Magma) : Prop ≝ - { associative: associative ? (op M) }. + { op_associative: associative ? (op M) }. record SemiGroup : Type ≝ { magma:> Magma; -- 2.39.2