From a4c1fed77216ee3dfc19ce4f3a1d7dd82de10171 Mon Sep 17 00:00:00 2001 From: matitaweb Date: Tue, 6 Mar 2012 18:01:38 +0000 Subject: [PATCH] commit by user utente2 --- weblib/tutorial/chapter7.ma | 4 +-- weblib/tutorial/chapter8.ma | 58 ++++++++++++++++++------------------- 2 files changed, 31 insertions(+), 31 deletions(-) diff --git a/weblib/tutorial/chapter7.ma b/weblib/tutorial/chapter7.ma index 17316f031..55a830179 100644 --- a/weblib/tutorial/chapter7.ma +++ b/weblib/tutorial/chapter7.ma @@ -229,11 +229,11 @@ interpretation "in_prl" 'in_l E = (in_prl ? E). (* The following, trivial lemmas are only meant for rewriting purposes. *) lemma sem_pre_true : ∀S.∀i:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S. - a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉} a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="in_pl" href="cic:/fakeuri.def(1)"\sem/a{i} a title="union" href="cic:/fakeuri.def(1)"∪/a a title="singleton" href="cic:/fakeuri.def(1)"{/aa title="epsilon" href="cic:/fakeuri.def(1)"ϵ/a}. + a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉} a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="in_pl" href="cic:/fakeuri.def(1)"\sem/a{i} a title="union" href="cic:/fakeuri.def(1)"∪/a a title="singleton" href="cic:/fakeuri.def(1)"{/aa title="epsilon" href="cic:/fakeuri.def(1)"ϵ/a}. // qed. lemma sem_pre_false : ∀S.∀i:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S. - a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉} a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="in_pl" href="cic:/fakeuri.def(1)"\sem/a{i}. + a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉} a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="in_pl" href="cic:/fakeuri.def(1)"\sem/a{i}. // qed. lemma sem_cat: ∀S.∀i1,i2:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S. diff --git a/weblib/tutorial/chapter8.ma b/weblib/tutorial/chapter8.ma index 7462d74b7..a84d10a2a 100644 --- a/weblib/tutorial/chapter8.ma +++ b/weblib/tutorial/chapter8.ma @@ -13,7 +13,7 @@ reached the end of a + ϵ and we must pursue broadcasting inside (b*a + b)b. Aga parallel on the two additive subterms b^*a and b; the first point is allowed to both enter the star, and to traverse it, stopping in front of a; the second point just stops in front of b. No point reached that end of b^*a + b hence no further propagation is possible. In conclusion: - •((a + ϵ)(b^*a + b)b) = 〈(•a + ϵ)((•b)^*•a + •b)b, false〉 + •((a + ϵ)(b^*a + b)b) = 〈(•a + ϵ)((•b)^*•a + •b)b, false〉 *) include "tutorial/chapter7.ma". @@ -22,17 +22,17 @@ include "tutorial/chapter7.ma". the end of the expression. Broadcasting inside a i1+i2 amounts to broadcast in parallel inside i1 and i2. If we define - 〈i1,b1〉 ⊕ 〈i2,b2〉 = 〈i1 + i2, b1∨ b2〉 + 〈i1,b1〉 ⊕ 〈i2,b2〉 = 〈i1 + i2, b1∨ b2〉 then, we just have •(i1+i2) = •(i1)⊕ •(i2). *) include "tutorial/chapter7.ma". -definition lo ≝ λS:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"DeqSet/a.λa,b:a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S.a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a a a title="pitem or" href="cic:/fakeuri.def(1)"+/a a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a b,a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a a a title="boolean or" href="cic:/fakeuri.def(1)"∨/a a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a b〉. +definition lo ≝ λS:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"DeqSet/a.λa,b:a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S.a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a a a title="pitem or" href="cic:/fakeuri.def(1)"+/a a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a b,a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a a a title="boolean or" href="cic:/fakeuri.def(1)"∨/a a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a b〉. notation "a ⊕ b" left associative with precedence 60 for @{'oplus $a $b}. interpretation "oplus" 'oplus a b = (lo ? a b). -lemma lo_def: ∀S.∀i1,i2:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S.∀b1,b2. a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1,b1〉a title="oplus" href="cic:/fakeuri.def(1)"⊕/aa title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai2,b2〉a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/aa title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1a title="pitem or" href="cic:/fakeuri.def(1)"+/ai2,b1a title="boolean or" href="cic:/fakeuri.def(1)"∨/ab2〉. +lemma lo_def: ∀S.∀i1,i2:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S.∀b1,b2. a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1,b1〉a title="oplus" href="cic:/fakeuri.def(1)"⊕/aa title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai2,b2〉a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/aa title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1a title="pitem or" href="cic:/fakeuri.def(1)"+/ai2,b1a title="boolean or" href="cic:/fakeuri.def(1)"∨/ab2〉. // qed. (* @@ -42,15 +42,15 @@ point reached the end of i1. This suggests to define •(i1 · i2) as •(i1) e ▹ i is a general operation of concatenation between a pre and an item, defined by cases on the boolean in e: - 〈i1,true〉 ▹ i2 = i1 ◃ •(i_2) - 〈i1,false〉 ▹ i2 = i1 · i2 + 〈i1,true〉 ▹ i2 = i1 ◃ •(i_2) + 〈i1,false〉 ▹ i2 = i1 · i2 In turn, ◃ says how to concatenate an item with a pre, that is however extremely simple: - i1 ◃ 〈i1,b〉 = 〈i_1 · i2, b〉 + i1 ◃ 〈i1,b〉 = 〈i_1 · i2, b〉 Let us come to the formalized definitions: *) definition pre_concat_r ≝ λS:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"DeqSet/a.λi:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S.λe:a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S. - match e with [ mk_Prod i1 b ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai a title="pitem cat" href="cic:/fakeuri.def(1)"·/a i1, b〉]. + match e with [ mk_Prod i1 b ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai a title="pitem cat" href="cic:/fakeuri.def(1)"·/a i1, b〉]. notation "i ◃ e" left associative with precedence 60 for @{'lhd $i $e}. interpretation "pre_concat_r" 'lhd i e = (pre_concat_r ? i e). @@ -77,7 +77,7 @@ definition pre_concat_l ≝ λS:a href="cic:/matita/tutorial/chapter4/DeqSet.in match e1 with [ mk_Prod i1 b1 ⇒ match b1 with [ true ⇒ (i1 a title="pre_concat_r" href="cic:/fakeuri.def(1)"◃/a (bcast ? i2)) - | false ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1 a title="pitem cat" href="cic:/fakeuri.def(1)"·/a i2,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 + | false ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1 a title="pitem cat" href="cic:/fakeuri.def(1)"·/a i2,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 ] ]. @@ -90,13 +90,13 @@ notation "•" non associative with precedence 60 for @{eclose ?}. let rec eclose (S: a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"DeqSet/a) (i: a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S) on i : a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S ≝ match i with - [ pz ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a a href="cic:/matita/tutorial/chapter7/pitem.con(0,1,1)"pz/a ?, a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a 〉 - | pe ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a a title="pitem epsilon" href="cic:/fakeuri.def(1)"ϵ/a, a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a 〉 - | ps x ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a a title="pitem pp" href="cic:/fakeuri.def(1)"`/a.x, a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 - | pp x ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a a title="pitem pp" href="cic:/fakeuri.def(1)"`/a.x, a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a 〉 + [ pz ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a a href="cic:/matita/tutorial/chapter7/pitem.con(0,1,1)"pz/a ?, a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a 〉 + | pe ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a a title="pitem epsilon" href="cic:/fakeuri.def(1)"ϵ/a, a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a 〉 + | ps x ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a a title="pitem pp" href="cic:/fakeuri.def(1)"`/a.x, a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 + | pp x ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a a title="pitem pp" href="cic:/fakeuri.def(1)"`/a.x, a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a 〉 | po i1 i2 ⇒ •i1 a title="oplus" href="cic:/fakeuri.def(1)"⊕/a •i2 | pc i1 i2 ⇒ •i1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i2 - | pk i ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a(a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (•i))a title="pitem star" href="cic:/fakeuri.def(1)"^/a*,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉]. + | pk i ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a(a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (•i))a title="pitem star" href="cic:/fakeuri.def(1)"^/a*,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉]. notation "• x" non associative with precedence 60 for @{'eclose $x}. interpretation "eclose" 'eclose x = (eclose ? x). @@ -104,15 +104,15 @@ interpretation "eclose" 'eclose x = (eclose ? x). (* Here are a few simple properties of ▹ and •(-) *) lemma pcl_true : ∀S.∀i1,i2:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S. - a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a i1 a title="pre_concat_r" href="cic:/fakeuri.def(1)"◃/a (a title="eclose" href="cic:/fakeuri.def(1)"•/ai2). + a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a i1 a title="pre_concat_r" href="cic:/fakeuri.def(1)"◃/a (a title="eclose" href="cic:/fakeuri.def(1)"•/ai2). // qed. lemma pcl_true_bis : ∀S.∀i1,i2:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S. - a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1 a title="pitem cat" href="cic:/fakeuri.def(1)"·/a a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a title="eclose" href="cic:/fakeuri.def(1)"•/ai2), a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a title="eclose" href="cic:/fakeuri.def(1)"•/ai2)〉. + a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1 a title="pitem cat" href="cic:/fakeuri.def(1)"·/a a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a title="eclose" href="cic:/fakeuri.def(1)"•/ai2), a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a title="eclose" href="cic:/fakeuri.def(1)"•/ai2)〉. #S #i1 #i2 normalize cases (a title="eclose" href="cic:/fakeuri.def(1)"•/ai2) // qed. lemma pcl_false: ∀S.∀i1,i2:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S. - a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1 a title="pitem cat" href="cic:/fakeuri.def(1)"·/a i2, a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉. + a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i2 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1 a title="pitem cat" href="cic:/fakeuri.def(1)"·/a i2, a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉. // qed. lemma eclose_plus: ∀S:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"DeqSet/a.∀i1,i2:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S. @@ -124,7 +124,7 @@ lemma eclose_dot: ∀S:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)" // qed. lemma eclose_star: ∀S:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"DeqSet/a.∀i:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S. - a title="eclose" href="cic:/fakeuri.def(1)"•/aia title="pitem star" href="cic:/fakeuri.def(1)"^/a* a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a(a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a(a title="eclose" href="cic:/fakeuri.def(1)"•/ai))a title="pitem star" href="cic:/fakeuri.def(1)"^/a*,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉. + a title="eclose" href="cic:/fakeuri.def(1)"•/aia title="pitem star" href="cic:/fakeuri.def(1)"^/a* a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a(a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a(a title="eclose" href="cic:/fakeuri.def(1)"•/ai))a title="pitem star" href="cic:/fakeuri.def(1)"^/a*,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉. // qed. (* The definition of •(-) (eclose) can then be lifted from items to pres @@ -132,7 +132,7 @@ in the obvious way. *) definition lift ≝ λS.λf:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S →a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S.λe:a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S. match e with - [ mk_Prod i b ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (f i), a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (f i) a title="boolean or" href="cic:/fakeuri.def(1)"∨/a b〉]. + [ mk_Prod i b ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (f i), a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (f i) a title="boolean or" href="cic:/fakeuri.def(1)"∨/a b〉]. definition preclose ≝ λS. a href="cic:/matita/tutorial/chapter8/lift.def(2)"lift/a S (a href="cic:/matita/tutorial/chapter8/eclose.fix(0,1,4)"eclose/a S). interpretation "preclose" 'eclose x = (preclose ? x). @@ -290,12 +290,12 @@ notation "e1 ⊙ e2" left associative with precedence 70 for @{'odot $e1 $e2}. interpretation "lifted cat" 'odot e1 e2 = (lifted_cat ? e1 e2). lemma odot_true_b : ∀S.∀i1,i2:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S.∀b. - a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉 a title="lifted cat" href="cic:/fakeuri.def(1)"⊙/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai2,b〉 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1 a title="pitem cat" href="cic:/fakeuri.def(1)"·/a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a title="eclose" href="cic:/fakeuri.def(1)"•/ai2)),a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a title="eclose" href="cic:/fakeuri.def(1)"•/ai2) a title="boolean or" href="cic:/fakeuri.def(1)"∨/a b〉. + a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉 a title="lifted cat" href="cic:/fakeuri.def(1)"⊙/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai2,b〉 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1 a title="pitem cat" href="cic:/fakeuri.def(1)"·/a (a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a title="eclose" href="cic:/fakeuri.def(1)"•/ai2)),a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a (a title="eclose" href="cic:/fakeuri.def(1)"•/ai2) a title="boolean or" href="cic:/fakeuri.def(1)"∨/a b〉. #S #i1 #i2 #b normalize in ⊢ (??%?); cases (a title="eclose" href="cic:/fakeuri.def(1)"•/ai2) // qed. lemma odot_false_b : ∀S.∀i1,i2:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S.∀b. - a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 a title="lifted cat" href="cic:/fakeuri.def(1)"⊙/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai2,b〉 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1 a title="pitem cat" href="cic:/fakeuri.def(1)"·/a i2 ,b〉. + a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 a title="lifted cat" href="cic:/fakeuri.def(1)"⊙/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai2,b〉 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1 a title="pitem cat" href="cic:/fakeuri.def(1)"·/a i2 ,b〉. // qed. @@ -310,8 +310,8 @@ definition lk ≝ λS:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)" match e with [ mk_Prod i1 b1 ⇒ match b1 with - [true ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a(a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a href="cic:/matita/tutorial/chapter8/eclose.fix(0,1,4)"eclose/a ? i1))a title="pitem star" href="cic:/fakeuri.def(1)"^/a*, a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉 - |false ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1a title="pitem star" href="cic:/fakeuri.def(1)"^/a*,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 + [true ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a(a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a href="cic:/matita/tutorial/chapter8/eclose.fix(0,1,4)"eclose/a ? i1))a title="pitem star" href="cic:/fakeuri.def(1)"^/a*, a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉 + |false ⇒ a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai1a title="pitem star" href="cic:/fakeuri.def(1)"^/a*,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 ] ]. @@ -320,11 +320,11 @@ interpretation "lk" 'lk a = (lk ? a). notation "a^⊛" non associative with precedence 90 for @{'lk $a}. lemma ostar_true: ∀S.∀i:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S. - a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉a title="lk" href="cic:/fakeuri.def(1)"^/a⊛ a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a(a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a title="eclose" href="cic:/fakeuri.def(1)"•/ai))a title="pitem star" href="cic:/fakeuri.def(1)"^/a*, a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉. + a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉a title="lk" href="cic:/fakeuri.def(1)"^/a⊛ a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/a(a title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (a title="eclose" href="cic:/fakeuri.def(1)"•/ai))a title="pitem star" href="cic:/fakeuri.def(1)"^/a*, a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉. // qed. lemma ostar_false: ∀S.∀i:a href="cic:/matita/tutorial/chapter7/pitem.ind(1,0,1)"pitem/a S. - a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉a title="lk" href="cic:/fakeuri.def(1)"^/a⊛ a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aia title="pitem star" href="cic:/fakeuri.def(1)"^/a*, a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉. + a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉a title="lk" href="cic:/fakeuri.def(1)"^/a⊛ a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aia title="pitem star" href="cic:/fakeuri.def(1)"^/a*, a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉. // qed. lemma erase_ostar: ∀S.∀e:a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S. @@ -332,9 +332,9 @@ lemma erase_ostar: ∀S.∀e:a href="cic:/matita/tutorial/chapter7/pre.def(1)" #S * #i * // qed. lemma sem_odot_true: ∀S:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"DeqSet/a.∀e1:a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S.∀i. - a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e1 a title="lifted cat" href="cic:/fakeuri.def(1)"⊙/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉} a title="extensional equality" href="cic:/fakeuri.def(1)"=/a1 a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i} a title="union" href="cic:/fakeuri.def(1)"∪/a a title="singleton" href="cic:/fakeuri.def(1)"{/a a title="nil" href="cic:/fakeuri.def(1)"[/a ] }. + a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e1 a title="lifted cat" href="cic:/fakeuri.def(1)"⊙/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉} a title="extensional equality" href="cic:/fakeuri.def(1)"=/a1 a title="in_prl" href="cic:/fakeuri.def(1)"\sem/a{e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i} a title="union" href="cic:/fakeuri.def(1)"∪/a a title="singleton" href="cic:/fakeuri.def(1)"{/a a title="nil" href="cic:/fakeuri.def(1)"[/a ] }. #S #e1 #i -cut (e1 a title="lifted cat" href="cic:/fakeuri.def(1)"⊙/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i), a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a(e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i) a title="boolean or" href="cic:/fakeuri.def(1)"∨/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉) [//] +cut (e1 a title="lifted cat" href="cic:/fakeuri.def(1)"⊙/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i), a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a(e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i) a title="boolean or" href="cic:/fakeuri.def(1)"∨/a a href="cic:/matita/basics/bool/bool.con(0,1,0)"true/a〉) [//] #H >H cases (e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i) #i1 #b1 cases b1 [>a href="cic:/matita/tutorial/chapter7/sem_pre_true.def(9)"sem_pre_true/a @a href="cic:/matita/tutorial/chapter4/eqP_trans.def(3)"eqP_trans/a [||@a href="cic:/matita/tutorial/chapter4/eqP_sym.def(3)"eqP_sym/a @a href="cic:/matita/tutorial/chapter4/union_assoc.def(3)"union_assoc/a] @a href="cic:/matita/tutorial/chapter4/eqP_union_l.def(3)"eqP_union_l/a /span class="autotactic"2span class="autotrace" trace a href="cic:/matita/tutorial/chapter4/eqP_sym.def(3)"eqP_sym/a/span/span/ @@ -343,9 +343,9 @@ cut (e1 a title="lifted cat" href="cic:/fakeuri.def(1)"⊙/a a title="Pair qed. lemma eq_odot_false: ∀S:a href="cic:/matita/tutorial/chapter4/DeqSet.ind(1,0,0)"DeqSet/a.∀e1:a href="cic:/matita/tutorial/chapter7/pre.def(1)"pre/a S.∀i. - e1 a title="lifted cat" href="cic:/fakeuri.def(1)"⊙/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i. + e1 a title="lifted cat" href="cic:/fakeuri.def(1)"⊙/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i. #S #e1 #i -cut (e1 a title="lifted cat" href="cic:/fakeuri.def(1)"⊙/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i), a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a(e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i) a title="boolean or" href="cic:/fakeuri.def(1)"∨/a a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉) [//] +cut (e1 a title="lifted cat" href="cic:/fakeuri.def(1)"⊙/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/ai,a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉 a title="leibnitz's equality" href="cic:/fakeuri.def(1)"=/a a title="Pair construction" href="cic:/fakeuri.def(1)"〈/aa title="pair pi1" href="cic:/fakeuri.def(1)"\fst/a (e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i), a title="pair pi2" href="cic:/fakeuri.def(1)"\snd/a(e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i) a title="boolean or" href="cic:/fakeuri.def(1)"∨/a a href="cic:/matita/basics/bool/bool.con(0,2,0)"false/a〉) [//] cases (e1 a title="item-pre concat" href="cic:/fakeuri.def(1)"▹/a i) #i1 #b1 cases b1 #H @H qed. -- 2.39.2