From a799c56fa883a1318cb42e185c0d0929b368a961 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Thu, 8 Jan 2009 11:57:57 +0000 Subject: [PATCH] unary_morphism_N : seoidN -> setoidN -> setoidN (was ... -> setoidN+1) notation for . is now bound to fi instead of if (i.e. rewrites -> ) --- .../formal_topology/overlap/categories.ma | 14 +++---- .../overlap/cprop_connectives.ma | 8 +--- .../contribs/formal_topology/overlap/depends | 9 +++-- .../formal_topology/overlap/relations.ma | 40 +++++++++---------- .../overlap/relations_to_o-algebra.ma | 26 ++++++------ .../formal_topology/overlap/subsets.ma | 28 ++++++------- 6 files changed, 60 insertions(+), 65 deletions(-) diff --git a/helm/software/matita/contribs/formal_topology/overlap/categories.ma b/helm/software/matita/contribs/formal_topology/overlap/categories.ma index 75ca005c6..2582167dc 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/categories.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/categories.ma @@ -85,7 +85,7 @@ definition setoid2_of_setoid1: setoid1 → setoid2. | apply (trans1 s)]] qed. -(*coercion setoid2_of_setoid1.*) +coercion setoid2_of_setoid1. (* definition Leibniz: Type → setoid. @@ -171,12 +171,12 @@ definition CPROP: setoid1. qed. alias symbol "eq" = "setoid1 eq". -definition if': ∀A,B:CPROP. A = B → A → B. - intros; apply (if ?? e); assumption. +definition fi': ∀A,B:CPROP. A = B → B → A. + intros; apply (fi ?? e); assumption. qed. -notation ". r" with precedence 50 for @{'if $r}. -interpretation "if" 'if r = (if' __ r). +notation ". r" with precedence 50 for @{'fi $r}. +interpretation "fi" 'fi r = (fi' __ r). definition and_morphism: binary_morphism1 CPROP CPROP CPROP. constructor 1; @@ -269,7 +269,7 @@ interpretation "category assoc" 'assoc = (comp_assoc ________). (* bug grande come una casa? Ma come fa a passare la quantificazione larga??? *) -definition unary_morphism_setoid: setoid → setoid → setoid1. +definition unary_morphism_setoid: setoid → setoid → setoid. intros; constructor 1; [ apply (unary_morphism s s1); @@ -318,7 +318,7 @@ notation "hbox(a break ⇒ b)" right associative with precedence 20 for @{ 'Impl interpretation "unary morphism" 'Imply a b = (arrows1 SET a b). interpretation "SET eq" 'eq x y = (eq_rel _ (eq' _) x y). -definition unary_morphism1_setoid1: setoid1 → setoid1 → setoid2. +definition unary_morphism1_setoid1: setoid1 → setoid1 → setoid1. intros; constructor 1; [ apply (unary_morphism1 s s1); diff --git a/helm/software/matita/contribs/formal_topology/overlap/cprop_connectives.ma b/helm/software/matita/contribs/formal_topology/overlap/cprop_connectives.ma index 4855bf658..aff6849b3 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/cprop_connectives.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/cprop_connectives.ma @@ -86,18 +86,12 @@ record Iff1 (A,B:CProp1) : CProp1 ≝ fi1: B → A }. -interpretation "logical iff" 'iff x y = (Iff x y). - notation "hvbox(a break ⇔ b)" right associative with precedence 25 for @{'iff1 $a $b}. +interpretation "logical iff" 'iff x y = (Iff x y). interpretation "logical iff type1" 'iff1 x y = (Iff1 x y). inductive exT (A:Type0) (P:A→CProp0) : CProp0 ≝ ex_introT: ∀w:A. P w → exT A P. - -notation "\ll term 19 a, break term 19 b \gg" -with precedence 90 for @{'dependent_pair $a $b}. -interpretation "dependent pair" 'dependent_pair a b = - (ex_introT _ _ a b). interpretation "CProp exists" 'exists \eta.x = (exT _ x). diff --git a/helm/software/matita/contribs/formal_topology/overlap/depends b/helm/software/matita/contribs/formal_topology/overlap/depends index ef49925f3..63392b5b3 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/depends +++ b/helm/software/matita/contribs/formal_topology/overlap/depends @@ -1,21 +1,22 @@ o-basic_pairs.ma o-algebra.ma o-concrete_spaces.ma o-basic_pairs.ma o-saturations.ma o-saturations.ma o-algebra.ma -basic_pairs.ma relations.ma saturations.ma relations.ma +basic_pairs.ma relations.ma o-algebra.ma categories.ma o-formal_topologies.ma o-basic_topologies.ma -categories.ma cprop_connectives.ma formal_topologies.ma basic_topologies.ma +categories.ma cprop_connectives.ma saturations_to_o-saturations.ma o-saturations.ma relations_to_o-algebra.ma saturations.ma -subsets.ma categories.ma basic_topologies.ma relations.ma saturations.ma +subsets.ma categories.ma concrete_spaces.ma basic_pairs.ma relations.ma subsets.ma concrete_spaces_to_o-concrete_spaces.ma basic_pairs_to_o-basic_pairs.ma concrete_spaces.ma o-concrete_spaces.ma o-basic_topologies.ma o-algebra.ma o-saturations.ma -basic_pairs_to_o-basic_pairs.ma basic_pairs.ma o-basic_pairs.ma relations_to_o-algebra.ma basic_topologies_to_o-basic_topologies.ma basic_topologies.ma o-basic_topologies.ma relations_to_o-algebra.ma +basic_pairs_to_o-basic_pairs.ma basic_pairs.ma o-basic_pairs.ma relations_to_o-algebra.ma cprop_connectives.ma logic/connectives.ma relations_to_o-algebra.ma o-algebra.ma relations.ma +o-basic_pairs_to_o-basic_topologies.ma concrete_spaces.ma o-basic_pairs.ma o-basic_topologies.ma logic/connectives.ma diff --git a/helm/software/matita/contribs/formal_topology/overlap/relations.ma b/helm/software/matita/contribs/formal_topology/overlap/relations.ma index c4502f3d0..ec7db6df4 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/relations.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/relations.ma @@ -49,8 +49,8 @@ definition composition: apply (λs1:carr A.λs3:carr C.∃s2:carr B. s1 ♮R12 s2 ∧ s2 ♮R23 s3); | intros; split; intro; cases e2 (w H3); clear e2; exists; [1,3: apply w ] - [ apply (. (e‡#)‡(#‡e1)); assumption - | apply (. ((e \sup -1)‡#)‡(#‡(e1 \sup -1))); assumption]] + [ apply (. (e^-1‡#)‡(#‡e1^-1)); assumption + | apply (. (e‡#)‡(#‡e1)); assumption]] | intros 8; split; intro H2; simplify in H2 ⊢ %; cases H2 (w H3); clear H2; exists [1,3: apply w] cases H3 (H2 H4); clear H3; [ lapply (if ?? (e x w) H2) | lapply (fi ?? (e x w) H2) ] @@ -88,8 +88,8 @@ definition REL: category1. |6,7: intros 5; unfold composition; simplify; split; intro; unfold setoid1_of_setoid in x y; simplify in x y; [1,3: cases e (w H1); clear e; cases H1; clear H1; unfold; - [ apply (. (e ^ -1 : eq1 ? w x)‡#); assumption - | apply (. #‡(e : eq1 ? w y)); assumption] + [ apply (. (e : eq1 ? x w)‡#); assumption + | apply (. #‡(e : eq1 ? w y)^-1); assumption] |2,4: exists; try assumption; split; (* change required to avoid universe inconsistency *) change in x with (carr o1); change in y with (carr o2); @@ -128,9 +128,9 @@ definition ext: ∀X,S:REL. binary_morphism1 (arrows1 ? X S) S (Ω \sup X). [ intros; simplify; apply (.= (e‡#)); apply refl1 | intros; simplify; split; intros; simplify; [ change with (∀x. x ♮a b → x ♮a' b'); intros; - apply (. (#‡e1)); whd in e; apply (if ?? (e ??)); assumption + apply (. (#‡e1^-1)); whd in e; apply (if ?? (e ??)); assumption | change with (∀x. x ♮a' b' → x ♮a b); intros; - apply (. (#‡e1\sup -1)); whd in e; apply (fi ?? (e ??));assumption]] + apply (. (#‡e1)); whd in e; apply (fi ?? (e ??));assumption]] qed. (* definition extS: ∀X,S:REL. ∀r: arrows1 ? X S. Ω \sup S ⇒ Ω \sup X. @@ -189,12 +189,12 @@ definition image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup U) (Ω \ intros; constructor 1; [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∃x:carr U. x ♮r y ∧ x ∈ S }); intros; simplify; split; intro; cases e1; exists [1,3: apply w] - [ apply (. (#‡e)‡#); assumption - | apply (. (#‡e ^ -1)‡#); assumption] + [ apply (. (#‡e^-1)‡#); assumption + | apply (. (#‡e)‡#); assumption] | intros; split; simplify; intros; cases e2; exists [1,3: apply w] - [ apply (. #‡(#‡e1)); cases x; split; try assumption; + [ apply (. #‡(#‡e1^-1)); cases x; split; try assumption; apply (if ?? (e ??)); assumption - | apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; + | apply (. #‡(#‡e1)); cases x; split; try assumption; apply (if ?? (e ^ -1 ??)); assumption]] qed. @@ -203,9 +203,9 @@ definition minus_star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \s intros; constructor 1; [ apply (λr: arrows1 ? U V.λS: Ω \sup U. {y | ∀x:carr U. x ♮r y → x ∈ S}); intros; simplify; split; intros; apply f; - [ apply (. #‡e ^ -1); assumption - | apply (. #‡e); assumption] - | intros; split; simplify; intros; [ apply (. #‡e1); | apply (. #‡e1 ^ -1)] + [ apply (. #‡e); assumption + | apply (. #‡e ^ -1); assumption] + | intros; split; simplify; intros; [ apply (. #‡e1^ -1); | apply (. #‡e1 )] apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] qed. @@ -214,9 +214,9 @@ definition star_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup V) intros; constructor 1; [ apply (λr: arrows1 ? U V.λS: Ω \sup V. {x | ∀y:carr V. x ♮r y → y ∈ S}); intros; simplify; split; intros; apply f; - [ apply (. e ^ -1‡#); assumption - | apply (. e‡#); assumption] - | intros; split; simplify; intros; [ apply (. #‡e1); | apply (. #‡e1 ^ -1)] + [ apply (. e ‡#); assumption + | apply (. e^ -1‡#); assumption] + | intros; split; simplify; intros; [ apply (. #‡e1 ^ -1); | apply (. #‡e1)] apply f; [ apply (if ?? (e ^ -1 ??)); | apply (if ?? (e ??)) ] assumption] qed. @@ -226,12 +226,12 @@ definition minus_image: ∀U,V:REL. binary_morphism1 (arrows1 ? U V) (Ω \sup V) [ apply (λr: arrows1 ? U V.λS: Ω \sup V. {x | (*∃x:U. x ♮r y ∧ x ∈ S*) exT ? (λy:carr V.x ♮r y ∧ y ∈ S) }); intros; simplify; split; intro; cases e1; exists [1,3: apply w] - [ apply (. (e‡#)‡#); assumption - | apply (. (e ^ -1‡#)‡#); assumption] + [ apply (. (e ^ -1‡#)‡#); assumption + | apply (. (e‡#)‡#); assumption] | intros; split; simplify; intros; cases e2; exists [1,3: apply w] - [ apply (. #‡(#‡e1)); cases x; split; try assumption; + [ apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; apply (if ?? (e ??)); assumption - | apply (. #‡(#‡e1 ^ -1)); cases x; split; try assumption; + | apply (. #‡(#‡e1)); cases x; split; try assumption; apply (if ?? (e ^ -1 ??)); assumption]] qed. diff --git a/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma index 40db8183f..781514e07 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/relations_to_o-algebra.ma @@ -52,7 +52,7 @@ definition SUBSETS: objs1 SET → OAlgebra. exists; [apply w] assumption]] | intros; intros 2; cases (f (singleton ? a) ?); [ exists; [apply a] [assumption | change with (a = a); apply refl1;] - | change in x1 with (a = w); change with (mem A a q); apply (. (x1 \sup -1‡#)); + | change in x1 with (a = w); change with (mem A a q); apply (. (x1‡#)); assumption]] qed. @@ -99,21 +99,21 @@ lemma orelation_of_relation_preserves_equality: intros; split; unfold orelation_of_relation; simplify; intro; split; intro; simplify; whd in o1 o2; [ change with (a1 ∈ minus_star_image ?? t a → a1 ∈ minus_star_image ?? t' a); - apply (. #‡(e‡#)); + apply (. #‡(e^-1‡#)); | change with (a1 ∈ minus_star_image ?? t' a → a1 ∈ minus_star_image ?? t a); - apply (. #‡(e ^ -1‡#)); - | change with (a1 ∈ minus_image ?? t a → a1 ∈ minus_image ?? t' a); apply (. #‡(e‡#)); - | change with (a1 ∈ minus_image ?? t' a → a1 ∈ minus_image ?? t a); + | change with (a1 ∈ minus_image ?? t a → a1 ∈ minus_image ?? t' a); apply (. #‡(e ^ -1‡#)); - | change with (a1 ∈ image ?? t a → a1 ∈ image ?? t' a); + | change with (a1 ∈ minus_image ?? t' a → a1 ∈ minus_image ?? t a); apply (. #‡(e‡#)); - | change with (a1 ∈ image ?? t' a → a1 ∈ image ?? t a); + | change with (a1 ∈ image ?? t a → a1 ∈ image ?? t' a); apply (. #‡(e ^ -1‡#)); - | change with (a1 ∈ star_image ?? t a → a1 ∈ star_image ?? t' a); + | change with (a1 ∈ image ?? t' a → a1 ∈ image ?? t a); apply (. #‡(e‡#)); + | change with (a1 ∈ star_image ?? t a → a1 ∈ star_image ?? t' a); + apply (. #‡(e ^ -1‡#)); | change with (a1 ∈ star_image ?? t' a → a1 ∈ star_image ?? t a); - apply (. #‡(e ^ -1‡#)); ] + apply (. #‡(e‡#)); ] qed. lemma hint: ∀o1,o2:OA. Type_OF_setoid2 (arrows2 ? o1 o2) → carr2 (arrows2 OA o1 o2). @@ -127,22 +127,22 @@ lemma orelation_of_relation_preserves_identity: [ change with ((∀x. x ♮(id1 REL o1) a1→x∈a) → a1 ∈ a); intros; apply (f a1); change with (a1 = a1); apply refl1; | change with (a1 ∈ a → ∀x. x ♮(id1 REL o1) a1→x∈a); intros; - change in f1 with (x = a1); apply (. f1 ^ -1‡#); apply f; + change in f1 with (x = a1); apply (. f1‡#); apply f; | alias symbol "and" = "and_morphism". change with ((∃y: carr o1.a1 ♮(id1 REL o1) y ∧ y∈a) → a1 ∈ a); intro; cases e; clear e; cases x; clear x; change in f with (a1=w); - apply (. f^-1‡#); apply f1; + apply (. f‡#); apply f1; | change with (a1 ∈ a → ∃y: carr o1.a1 ♮(id1 REL o1) y ∧ y∈a); intro; exists; [apply a1]; split; [ change with (a1=a1); apply refl1; | apply f] | change with ((∃x: carr o1.x ♮(id1 REL o1) a1∧x∈a) → a1 ∈ a); intro; cases e; clear e; cases x; clear x; change in f with (w=a1); - apply (. f‡#); apply f1; + apply (. f^-1‡#); apply f1; | change with (a1 ∈ a → ∃x: carr o1.x ♮(id1 REL o1) a1∧x∈a); intro; exists; [apply a1]; split; [ change with (a1=a1); apply refl1; | apply f] | change with ((∀y.a1 ♮(id1 REL o1) y→y∈a) → a1 ∈ a); intros; apply (f a1); change with (a1 = a1); apply refl1; | change with (a1 ∈ a → ∀y.a1 ♮(id1 REL o1) y→y∈a); intros; - change in f1 with (a1 = y); apply (. f1‡#); apply f;] + change in f1 with (a1 = y); apply (. f1^-1‡#); apply f;] qed. lemma hint2: ∀S,T. carr2 (arrows2 OA S T) → Type_OF_setoid2 (arrows2 OA S T). diff --git a/helm/software/matita/contribs/formal_topology/overlap/subsets.ma b/helm/software/matita/contribs/formal_topology/overlap/subsets.ma index 3aaf2d3d6..c15ef844e 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/subsets.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/subsets.ma @@ -90,10 +90,10 @@ definition overlaps: ∀A. binary_morphism1 (Ω \sup A) (Ω \sup A) CPROP. [ apply (λA:objs1 SET.λU,V:Ω \sup A.(exT2 ? (λx:A.?(*x*) ∈ U) (λx:A.?(*x*) ∈ V) : CProp0)) | intros; constructor 1; intro; cases e2; exists; [1,4: apply w] - [ apply (. #‡e); assumption - | apply (. #‡e1); assumption - | apply (. #‡(e \sup -1)); assumption; - | apply (. #‡(e1 \sup -1)); assumption]] + [ apply (. #‡e^-1); assumption + | apply (. #‡e1^-1); assumption + | apply (. #‡e); assumption; + | apply (. #‡e1); assumption]] qed. interpretation "overlaps" 'overlaps U V = (fun21 ___ (overlaps _) U V). @@ -106,8 +106,8 @@ definition intersects: intros; simplify; apply (.= (e‡#)‡(e‡#)); apply refl1; | intros; split; intros 2; simplify in f ⊢ %; - [ apply (. (#‡e)‡(#‡e1)); assumption - | apply (. (#‡(e \sup -1))‡(#‡(e1 \sup -1))); assumption]] + [ apply (. (#‡e^-1)‡(#‡e1^-1)); assumption + | apply (. (#‡e)‡(#‡e1)); assumption]] qed. interpretation "intersects" 'intersects U V = (fun21 ___ (intersects _) U V). @@ -120,8 +120,8 @@ definition union: intros; simplify; apply (.= (e‡#)‡(e‡#)); apply refl1 | intros; split; intros 2; simplify in f ⊢ %; - [ apply (. (#‡e)‡(#‡e1)); assumption - | apply (. (#‡(e \sup -1))‡(#‡(e1 \sup -1))); assumption]] + [ apply (. (#‡e^-1)‡(#‡e1^-1)); assumption + | apply (. (#‡e)‡(#‡e1)); assumption]] qed. interpretation "union" 'union U V = (fun21 ___ (union _) U V). @@ -146,11 +146,11 @@ definition big_intersects: intros; constructor 1; [ intro; whd; whd in I; apply ({x | ∀i:I. x ∈ t i}); - simplify; intros; split; intros; [ apply (. (e‡#)); | apply (. (e \sup -1‡#)); ] + simplify; intros; split; intros; [ apply (. (e^-1‡#)); | apply (. e‡#); ] apply f; | intros; split; intros 2; simplify in f ⊢ %; intro; - [ apply (. (#‡(e i))); apply f; - | apply (. (#‡(e i)\sup -1)); apply f]] + [ apply (. (#‡(e i)^-1)); apply f; + | apply (. (#‡e i)); apply f]] qed. definition big_union: @@ -159,9 +159,9 @@ definition big_union: [ intro; whd; whd in A; whd in I; apply ({x | ∃i:carr I. x ∈ t i }); simplify; intros; split; intros; cases e1; clear e1; exists; [1,3:apply w] - [ apply (. (e‡#)); | apply (. (e \sup -1‡#)); ] + [ apply (. (e^-1‡#)); | apply (. (e‡#)); ] apply x; | intros; split; intros 2; simplify in f ⊢ %; cases f; clear f; exists; [1,3:apply w] - [ apply (. (#‡(e w))); apply x; - | apply (. (#‡(e w)\sup -1)); apply x]] + [ apply (. (#‡(e w)^-1)); apply x; + | apply (. (#‡e w)); apply x]] qed. -- 2.39.2