From a7de6cc15403f555ed5d467e59e7c4122b24816b Mon Sep 17 00:00:00 2001 From: Andrea Asperti Date: Mon, 21 Mar 2011 07:41:43 +0000 Subject: [PATCH] sn_lambda --- matita/matita/lib/lambda/reduction.ma | 155 +++++++++++++++++++++++++- matita/matita/lib/lambda/subterms.ma | 8 +- 2 files changed, 159 insertions(+), 4 deletions(-) diff --git a/matita/matita/lib/lambda/reduction.ma b/matita/matita/lib/lambda/reduction.ma index e6a122c85..8d0cefc16 100644 --- a/matita/matita/lib/lambda/reduction.ma +++ b/matita/matita/lib/lambda/reduction.ma @@ -10,6 +10,7 @@ V_______________________________________________________________ *) include "lambda/par_reduction.ma". +include "basics/star.ma". (* inductive T : Type[0] ≝ @@ -26,16 +27,164 @@ inductive red : T →T → Prop ≝ | rdapp: ∀M,N. red (App (D M) N) (D (App M N)) | rdlam: ∀M,N. red (Lambda M (D N)) (D (Lambda M N)) | rappl: ∀M,M1,N. red M M1 → red (App M N) (App M1 N) - | rappr: ∀M,N,N1. red N N1 → red (App M N1) (App M N1) + | rappr: ∀M,N,N1. red N N1 → red (App M N) (App M N1) | rlaml: ∀M,M1,N. red M M1 → red (Lambda M N) (Lambda M1 N) - | rlamr: ∀M,N,N1. red N N1 → red(Lambda M N1) (Lambda M N1) + | rlamr: ∀M,N,N1. red N N1 → red(Lambda M N) (Lambda M N1) | rprodl: ∀M,M1,N. red M M1 → red (Prod M N) (Prod M1 N) - | rprodr: ∀M,N,N1. red N N1 → red (Prod M N1) (Prod M N1) + | rprodr: ∀M,N,N1. red N N1 → red (Prod M N) (Prod M N1) | d: ∀M,M1. red M M1 → red (D M) (D M1). lemma red_to_pr: ∀M,N. red M N → pr M N. #M #N #redMN (elim redMN) /2/ qed. + +lemma red_d : ∀M,P. red (D M) P → ∃N. P = D N ∧ red M N. +#M #P #redMP (inversion redMP) + [#P1 #M1 #N1 #eqH destruct + |#M1 #N1 #eqH destruct + |#M1 #N1 #eqH destruct + |4,5,6,7,8,9:#Q1 #Q2 #N1 #red1 #_ #eqH destruct + |#Q1 #M1 #red1 #_ #eqH destruct #eqP @(ex_intro … M1) /2/ + ] +qed. + +lemma red_lambda : ∀M,N,P. red (Lambda M N) P → + (∃M1. P = (Lambda M1 N) ∧ red M M1) ∨ + (∃N1. P = (Lambda M N1) ∧ red N N1) ∨ + (∃Q. N = D Q ∧ P = D (Lambda M Q)). +#M #N #P #redMNP (inversion redMNP) + [#P1 #M1 #N1 #eqH destruct + |#M1 #N1 #eqH destruct + |#M1 #N1 #eqH destruct #eqP %2 (@(ex_intro … N1)) % // + |4,5,8,9:#Q1 #Q2 #N1 #red1 #_ #eqH destruct + |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %1 %1 + (@(ex_intro … M1)) % // + |#Q1 #M1 #N1 #red1 #_ #eqH destruct #eqP %1 %2 + (@(ex_intro … N1)) % // + |#Q1 #M1 #red1 #_ #eqH destruct + ] +qed. + +definition reduct ≝ λn,m. red m n. + +definition SN ≝ WF ? reduct. + +definition NF ≝ λM. ∀N. ¬ (reduct N M). + +theorem NF_to_SN: ∀M. NF M → SN M. +#M #nfM % #a #red @False_ind /2/ +qed. + +lemma NF_Sort: ∀i. NF (Sort i). +#i #N % #redN (inversion redN) + [1: #P #N #M #H destruct + |2,3 :#N #M #H destruct + |4,5,6,7,8,9: #N #M #P #_ #_ #H destruct + |#M #N #_ #_ #H destruct + ] +qed. + +lemma NF_Rel: ∀i. NF (Rel i). +#i #N % #redN (inversion redN) + [1: #P #N #M #H destruct + |2,3 :#N #M #H destruct + |4,5,6,7,8,9: #N #M #P #_ #_ #H destruct + |#M #N #_ #_ #H destruct + ] +qed. + +lemma SN_d : ∀M. SN M → SN (D M). +#M #snM (elim snM) #b #H #Hind % #a #redd (cases (red_d … redd)) +#Q * #eqa #redbQ >eqa @Hind // +qed. + +lemma SN_step: ∀N. SN N → ∀M. reduct M N → SN M. +#N * #b #H #M #red @H //. +qed. + +lemma sub_red: ∀M,N.subterm N M → ∀N1.red N N1 → +∃M1.subterm N1 M1 ∧ red M M1. +#M #N #subN (elim subN) /4/ +(* trsansitive case *) +#P #Q #S #subPQ #subQS #H1 #H2 #A #redP (cases (H1 ? redP)) +#B * #subA #redQ (cases (H2 ? redQ)) #C * #subBC #redSC +@(ex_intro … C) /3/ +qed. + +axiom sub_star_red: ∀M,N.(star … subterm) N M → ∀N1.red N N1 → +∃M1.subterm N1 M1 ∧ red M M1. + +lemma SN_subterm: ∀M. SN M → ∀N.subterm N M → SN N. +#M #snM (elim snM) #M #snM #HindM #N #subNM % #N1 #redN +(cases (sub_red … subNM ? redN)) #M1 * +#subN1M1 #redMM1 @(HindM … redMM1) // +qed. + +lemma SN_subterm_star: ∀M. SN M → ∀N.(star … subterm N M) → SN N. +#M #snM #N #Hstar (cases (star_inv T subterm M N)) #_ #H +lapply (H Hstar) #Hstari (elim Hstari) // +#M #N #_ #subNM #snM @(SN_subterm …subNM) // +qed. + +definition shrink ≝ λN,M. reduct N M ∨ (TC … subterm) N M. + +definition SH ≝ WF ? shrink. + +lemma SH_subterm: ∀M. SH M → ∀N.(star … subterm) N M → SH N. +#M #snM (elim snM) #M +#snM #HindM #N #subNM (cases (star_case ???? subNM)) + [#eqNM >eqNM % /2/ + |#subsNM % #N1 * + [#redN (cases (sub_star_red … subNM ? redN)) #M1 * + #subN1M1 #redMM1 @(HindM M1) /2/ + |#subN1 @(HindM N) /2/ + ] + ] +qed. + +theorem SN_to_SH: ∀N. SN N → SH N. +#N #snN (elim snN) (@Telim_size) +#b #Hsize #snb #Hind % #a * /2/ #subab @Hsize; + [(elim subab) + [#c #subac @size_subterm // + |#b #c #subab #subbc #sab @(transitive_lt … sab) @size_subterm // + ] + |@SN_step @(SN_subterm_star b); + [% /2/ |@TC_to_star @subab] % @snb + |#a1 #reda1 cases(sub_star_red b a ?? reda1); + [#a2 * #suba1 #redba2 @(SH_subterm a2) /2/ |/2/ ] + ] +qed. + +lemma SH_to_SN: ∀N. SH N → SN N. +@WF_antimonotonic /2/ qed. + +lemma SH_Lambda: ∀N.SN N → ∀M.SN M → SN (Lambda N M). +#N #snN (elim snN) #P #shP #HindP #M #snM +(* for M we proceed by induction on SH *) +(lapply (SN_to_SH ? snM)) #shM (elim shM) +#Q #shQ #HindQ % #a #redH (cases (red_lambda … redH)) + [* + [* #S * #eqa #redPS >eqa @(HindP S ? Q ?) // + @SH_to_SN % /2/ + |* #S * #eqa #redQS >eqa @(HindQ S) /2/ + ] + |* #S * #eqQ #eqa >eqa @SN_d @(HindQ S) /3/ + ] +qed. + +(* +lemma SH_Lambda: ∀N.SH N → ∀M.SH M → SN (Lambda N M). +#N #snN (elim snN) #P #snP #HindP #M #snM (elim snM) +#Q #snQ #HindQ % #a #redH (cases (red_lambda … redH)) + [* + [* #S * #eqa #redPS >eqa @(HindP S ? Q ?) /2/ + % /2/ + |* #S * #eqa #redQS >eqa @(HindQ S) /2/ + ] + |* #S * #eqQ #eqa >eqa @SN_d @(HindQ S) /3/ + ] +qed. *) diff --git a/matita/matita/lib/lambda/subterms.ma b/matita/matita/lib/lambda/subterms.ma index 86d95b643..d2b7bee30 100644 --- a/matita/matita/lib/lambda/subterms.ma +++ b/matita/matita/lib/lambda/subterms.ma @@ -139,7 +139,7 @@ match M with ] . -axiom pos_size: ∀M. 1 ≤ size M. +(* axiom pos_size: ∀M. 1 ≤ size M. *) theorem Telim_size: ∀P: T → Prop. (∀M. (∀N. size N < size M → P N) → P M) → ∀M. P M. @@ -148,3 +148,9 @@ theorem Telim_size: ∀P: T → Prop. #p @(nat_elim1 p) #m #H1 #N #sizeN @H #N0 #Hlt @(H1 (size N0)) // qed. +(* size of subterms *) + +lemma size_subterm : ∀N,M. subterm N M → size N < size M. +#N #M #subH (elim subH) normalize // +#M1 #N1 #P #sub1 #sub2 #size1 #size2 @(transitive_lt … size1 size2) +qed. -- 2.39.2