From aff2f21cec89cf343297ae6bd720fc6573a3aba1 Mon Sep 17 00:00:00 2001 From: Ferruccio Guidi Date: Thu, 30 Nov 2017 11:11:27 +0000 Subject: [PATCH] work in progress with fle ... --- .../lambdadelta/basic_2/static/fle.ma | 51 +++++++++--------- .../lambdadelta/basic_2/static/fle_fle.ma | 53 ++++++++++++++++++- .../lambdadelta/basic_2/static/fle_fqup.ma | 53 ++++++++++++------- 3 files changed, 109 insertions(+), 48 deletions(-) diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/fle.ma b/matita/matita/contribs/lambdadelta/basic_2/static/fle.ma index 1ba1b6c01..1a0a83d6b 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/fle.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/fle.ma @@ -14,38 +14,37 @@ include "ground_2/relocation/rtmap_id.ma". include "basic_2/notation/relations/subseteq_4.ma". +include "basic_2/syntax/voids_length.ma". include "basic_2/static/frees.ma". (* FREE VARIABLES INCLUSION FOR RESTRICTED CLOSURES *************************) -definition fle: bi_relation lenv term ≝ λL1,T1,L2,T2. - ∃∃f1,f2. L1 ⊢ 𝐅*⦃T1⦄ ≡ f1 & L2 ⊢ 𝐅*⦃T2⦄ ≡ f2 & f1 ⊆ f2. +inductive fle (T2) (L2) (T1): predicate lenv ≝ +| fle_intro: ∀f1,f2,L1,n. ⓧ*[n]L1 ⊢ 𝐅*⦃T1⦄ ≡ f1 → L2 ⊢ 𝐅*⦃T2⦄ ≡ f2 → + |L1| = |L2| → ⫱*[n]f1 ⊆ f2 → fle T2 L2 T1 (ⓧ*[n]L1) +. interpretation "free variables inclusion (restricted closure)" - 'SubSetEq L1 T1 L2 T2 = (fle L1 T1 L2 T2). + 'SubSetEq L1 T1 L2 T2 = (fle T2 L2 T1 L1). (* Basic properties *********************************************************) -lemma fle_sort: ∀L1,L2,s1,s2. ⦃L1, ⋆s1⦄ ⊆ ⦃L2, ⋆s2⦄. -/3 width=5 by frees_sort, sle_refl, ex3_2_intro/ qed. - -lemma fle_gref: ∀L1,L2,l1,l2. ⦃L1, §l1⦄ ⊆ ⦃L2, §l2⦄. -/3 width=5 by frees_gref, sle_refl, ex3_2_intro/ qed. - -lemma fle_bind: ∀L1,L2,V1,V2. ⦃L1, V1⦄ ⊆ ⦃L2, V2⦄ → - ∀I1,I2,T1,T2. ⦃L1.ⓑ{I1}V1, T1⦄ ⊆ ⦃L2.ⓑ{I2}V2, T2⦄ → - ∀p. ⦃L1, ⓑ{p,I1}V1.T1⦄ ⊆ ⦃L2, ⓑ{p,I2}V2.T2⦄. -#L1 #L2 #V1 #V2 * #f1 #g1 #HV1 #HV2 #Hfg1 #I1 #I2 #T1 #T2 * #f2 #g2 #Hf2 #Hg2 #Hfg2 #p -elim (sor_isfin_ex f1 (⫱f2)) /3 width=3 by frees_fwd_isfin, isfin_tl/ #f #Hf #_ -elim (sor_isfin_ex g1 (⫱g2)) /3 width=3 by frees_fwd_isfin, isfin_tl/ #g #Hg #_ -/4 width=12 by frees_bind, monotonic_sle_sor, sle_tl, ex3_2_intro/ -qed. - -lemma fle_flat: ∀L1,L2,V1,V2. ⦃L1, V1⦄ ⊆ ⦃L2, V2⦄ → - ∀T1,T2. ⦃L1, T1⦄ ⊆ ⦃L2, T2⦄ → - ∀I1,I2. ⦃L1, ⓕ{I1}V1.T1⦄ ⊆ ⦃L2, ⓕ{I2}V2.T2⦄. -#L1 #L2 #V1 #V2 * #f1 #g1 #HV1 #HV2 #Hfg1 #T1 #T2 * #f2 #g2 #Hf2 #Hg2 #Hfg2 #I1 #I2 -elim (sor_isfin_ex f1 f2) /2 width=3 by frees_fwd_isfin/ #f #Hf #_ -elim (sor_isfin_ex g1 g2) /2 width=3 by frees_fwd_isfin/ #g #Hg #_ -/3 width=12 by frees_flat, monotonic_sle_sor, ex3_2_intro/ -qed. +lemma fle_sort: ∀L1,L2. |L1| = |L2| → ∀s1,s2. ⦃L1, ⋆s1⦄ ⊆ ⦃L2, ⋆s2⦄. +/3 width=5 by frees_sort, sle_refl, fle_intro/ qed. + +lemma fle_gref: ∀L1,L2. |L1| = |L2| → ∀l1,l2. ⦃L1, §l1⦄ ⊆ ⦃L2, §l2⦄. +/3 width=5 by frees_gref, sle_refl, fle_intro/ qed. + +(* Basic inversion lemmas ***************************************************) + +fact fle_inv_voids_sn_aux: ∀L1,L2,T1,T2. ⦃L1, T1⦄ ⊆ ⦃L2, T2⦄ → + ∀K1,n. |K1| = |L2| → L1 = ⓧ*[n]K1 → + ∃∃f1,f2. ⓧ*[n]K1 ⊢ 𝐅*⦃T1⦄ ≡ f1 & L2 ⊢ 𝐅*⦃T2⦄ ≡ f2 & ⫱*[n]f1 ⊆ f2. +#L1 #L2 #T1 #T2 * -L1 #f1 #f2 #L1 #n #Hf1 #Hf2 #HL12 #Hf12 #Y #x #HY #H destruct +elim (voids_inj_length … H) // -H -HL12 -HY #H1 #H2 destruct +/2 width=5 by ex3_2_intro/ +qed-. + +lemma fle_inv_voids_sn: ∀L1,L2,T1,T2,n. ⦃ⓧ*[n]L1, T1⦄ ⊆ ⦃L2, T2⦄ → |L1| = |L2| → + ∃∃f1,f2. ⓧ*[n]L1 ⊢ 𝐅*⦃T1⦄ ≡ f1 & L2 ⊢ 𝐅*⦃T2⦄ ≡ f2 & ⫱*[n]f1 ⊆ f2. +/2 width=3 by fle_inv_voids_sn_aux/ qed-. diff --git a/matita/matita/contribs/lambdadelta/basic_2/static/fle_fle.ma b/matita/matita/contribs/lambdadelta/basic_2/static/fle_fle.ma index 77b284b11..e756b43f7 100644 --- a/matita/matita/contribs/lambdadelta/basic_2/static/fle_fle.ma +++ b/matita/matita/contribs/lambdadelta/basic_2/static/fle_fle.ma @@ -13,13 +13,62 @@ (**************************************************************************) include "basic_2/static/frees_frees.ma". -include "basic_2/static/fle.ma". +include "basic_2/static/fle_fqup.ma". (* FREE VARIABLES INCLUSION FOR RESTRICTED CLOSURES *************************) -(* Main properties **********************************************************) +(* Advanced inversion lemmas ************************************************) + +lemma fle_inv_voids_sn_frees_dx: ∀L1,L2,T1,T2,n. ⦃ⓧ*[n]L1, T1⦄ ⊆ ⦃L2, T2⦄ → + |L1| = |L2| → ∀f2. L2 ⊢ 𝐅*⦃T2⦄ ≡ f2 → + ∃∃f1. ⓧ*[n]L1 ⊢ 𝐅*⦃T1⦄ ≡ f1 & ⫱*[n]f1 ⊆ f2. +#L1 #L2 #T1 #T2 #n #H #HL12 #f2 #Hf2 +elim (fle_inv_voids_sn … H HL12) -H -HL12 #f1 #g2 #Hf1 #Hg2 #Hfg +lapply (frees_mono … Hg2 … Hf2) -Hg2 -Hf2 #Hfg2 +lapply (sle_eq_repl_back2 … Hfg … Hfg2) -g2 +/2 width=3 by ex2_intro/ +qed-. +(* Main properties **********************************************************) +(* theorem fle_trans: bi_transitive … fle. #L1 #L #T1 #T * #f1 #f #HT1 #HT #Hf1 #L2 #T2 * #g #f2 #Hg #HT2 #Hf2 /5 width=8 by frees_mono, sle_trans, sle_eq_repl_back2, ex3_2_intro/ qed-. +*) +theorem fle_bind_sn: ∀L1,L2,V1,T1,T. ⦃L1, V1⦄ ⊆ ⦃L2, T⦄ → ⦃L1.ⓧ, T1⦄ ⊆ ⦃L2, T⦄ → + ∀p,I. ⦃L1, ⓑ{p,I}V1.T1⦄ ⊆ ⦃L2, T⦄. +#L1 #L2 #V1 #T1 #T * -L1 #f1 #x #L1 #n1 #Hf1 #Hx #HL12 #Hf1x +>voids_succ #H #p #I +elim (fle_inv_voids_sn_frees_dx … H … Hx) -H // #f2 #Hf2 +