From b01babfb5a97c4716ba2ab502b30e801cf0c7568 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Mon, 22 Dec 2008 16:45:59 +0000 Subject: [PATCH] 1 more lemma --- .../overlap/o-concrete_spaces.ma | 43 ++++++++++--------- 1 file changed, 22 insertions(+), 21 deletions(-) diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-concrete_spaces.ma b/helm/software/matita/contribs/formal_topology/overlap/o-concrete_spaces.ma index c2dc0fc60..c3221a7d9 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-concrete_spaces.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-concrete_spaces.ma @@ -85,14 +85,15 @@ intros; constructor 1; | intros; apply ((†H)‡(†H1));] qed. +interpretation "concrete_space binary ↓" 'fintersects a b = (fun1 _ _ _ (binary_downarrow _) a b). + record convergent_relation_pair (CS1,CS2: concrete_space) : Type ≝ { rp:> arrows1 ? CS1 CS2; respects_converges: - ∀b,c. (rp\sub\c)⎻ (Ext⎽CS2 (b ↓ c)) = ?(* - extS ?? rp \sub\c (BPextS CS2 (b ↓ c)) = - BPextS CS1 ((extS ?? rp \sub\f b) ↓ (extS ?? rp \sub\f c)); + ∀b,c. eq1 ? (rp\sub\c⎻ (Ext⎽CS2 (b ↓ c))) (Ext⎽CS1 (rp\sub\f⎻ b ↓ rp\sub\f⎻ c)); respects_all_covered: - extS ?? rp\sub\c (BPextS CS2 (form CS2)) = BPextS CS1 (form CS1)*) + eq1 ? (rp\sub\c⎻ (Ext⎽CS2 (oa_one (form CS2)))) + (Ext⎽CS1 (oa_one (form CS1))) }. definition rp' : ∀CS1,CS2. convergent_relation_pair CS1 CS2 → relation_pair CS1 CS2 ≝ @@ -117,6 +118,13 @@ definition rp'': ∀CS1,CS2.convergent_relation_space_setoid CS1 CS2 → arrows1 coercion rp''. +definition prop_1_SET : + ∀A,B:SET.∀w:arrows1 SET A B.∀a,b:A.eq1 ? a b→eq1 ? (w a) (w b). +intros; apply (prop_1 A B w a b H); +qed. + +interpretation "SET dagger" 'prop1 h = (prop_1_SET _ _ _ _ _ h). + definition convergent_relation_space_composition: ∀o1,o2,o3: concrete_space. binary_morphism1 @@ -127,28 +135,21 @@ definition convergent_relation_space_composition: [ intros; whd in c c1 ⊢ %; constructor 1; [ apply (fun1 ??? (comp1 BP ???)); [apply (bp o2) |*: apply rp; assumption] - | intros; - change in ⊢ (? ? ? (? ? ? (? ? ? %) ?) ?) with (c1 \sub \c ∘ c \sub \c); - change in ⊢ (? ? ? ? (? ? ? ? (? ? ? ? ? (? ? ? (? ? ? %) ?) ?))) - with (c1 \sub \f ∘ c \sub \f); - change in ⊢ (? ? ? ? (? ? ? ? (? ? ? ? ? ? (? ? ? (? ? ? %) ?)))) - with (c1 \sub \f ∘ c \sub \f); - apply (.= (extS_com ??????)); - apply (.= (†(respects_converges ?????))); - apply (.= (respects_converges ?????)); - apply (.= (†(((extS_com ??????) \sup -1)‡(extS_com ??????)\sup -1))); + | intros; + change in ⊢ (? ? ? % ?) with (c\sub\c⎻ (c1\sub\c⎻ (Ext⎽o3 (b↓c2)))); + alias symbol "trans" = "trans1". + apply (.= († (respects_converges : ?))); + apply (.= (respects_converges : ?)); apply refl1; - | change in ⊢ (? ? ? (? ? ? (? ? ? %) ?) ?) with (c1 \sub \c ∘ c \sub \c); - apply (.= (extS_com ??????)); - apply (.= (†(respects_all_covered ???))); - apply (.= respects_all_covered ???); + | change in ⊢ (? ? ? % ?) with (c\sub\c⎻ (c1\sub\c⎻ (Ext⎽o3 (oa_one (form o3))))); + apply (.= (†(respects_all_covered :?))); + apply (.= (respects_all_covered :?)); apply refl1] | intros; - change with (b ∘ a = b' ∘ a'); + change with (b ∘ a = b' ∘ a'); change in H with (rp'' ?? a = rp'' ?? a'); change in H1 with (rp'' ?? b = rp ?? b'); - apply (.= (H‡H1)); - apply refl1] + apply ( (H‡H1));] qed. definition CSPA: category1. -- 2.39.2