From b47c73ebbc1a6e8cc930a6c8c99f90d4fe2f19b8 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Thu, 29 Jan 2009 13:00:42 +0000 Subject: [PATCH] more polishing --- .../o-basic_pairs_to_o-basic_topologies.ma | 12 +-- .../overlap/o-basic_topologies.ma | 96 +++++++++---------- .../overlap/r-o-basic_pairs.ma | 9 +- 3 files changed, 60 insertions(+), 57 deletions(-) diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs_to_o-basic_topologies.ma b/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs_to_o-basic_topologies.ma index b2dfffd02..1bf31881c 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs_to_o-basic_topologies.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-basic_pairs_to_o-basic_topologies.ma @@ -19,7 +19,7 @@ include "o-basic_topologies.ma". alias symbol "eq" = "setoid1 eq". (* Qui, per fare le cose per bene, ci serve la nozione di funtore categorico *) -definition o_basic_topology_of_o_basic_pair: OBP → BTop. +definition o_basic_topology_of_o_basic_pair: OBP → OBTop. intro t; constructor 1; [ apply (Oform t); @@ -60,7 +60,7 @@ qed. definition o_continuous_relation_of_o_relation_pair: ∀BP1,BP2.arrows2 OBP BP1 BP2 → - arrows2 BTop (o_basic_topology_of_o_basic_pair BP1) (o_basic_topology_of_o_basic_pair BP2). + arrows2 OBTop (o_basic_topology_of_o_basic_pair BP1) (o_basic_topology_of_o_basic_pair BP2). intros (BP1 BP2 t); constructor 1; [ apply (t \sub \f); @@ -93,15 +93,15 @@ definition o_continuous_relation_of_o_relation_pair: qed. -definition OR : carr3 (arrows3 CAT2 OBP BTop). +definition OR : carr3 (arrows3 CAT2 OBP OBTop). constructor 1; [ apply o_basic_topology_of_o_basic_pair; | intros; constructor 1; [ apply o_continuous_relation_of_o_relation_pair; | apply hide; intros; whd; unfold o_continuous_relation_of_o_relation_pair; simplify;; - change with ((a \sub \f ⎻* ∘ A (o_basic_topology_of_o_basic_pair S)) = - (a' \sub \f ⎻*∘A (o_basic_topology_of_o_basic_pair S))); + change with ((a \sub \f ⎻* ∘ oA (o_basic_topology_of_o_basic_pair S)) = + (a' \sub \f ⎻*∘ oA (o_basic_topology_of_o_basic_pair S))); whd in e; cases e; clear e e2 e3 e4; change in ⊢ (? ? ? (? ? ? ? ? % ?) ?) with ((⊩\sub S)⎻* ∘ (⊩\sub S)⎻); apply (.= (comp_assoc2 ? ???? ?? a\sub\f⎻* )); @@ -113,7 +113,7 @@ constructor 1; change in ⊢ (? ? ? (? ? ? ? ? ? %) ?) with (a'\sub\f⎻* ∘ (⊩\sub S)⎻* ); apply (.= (comp_assoc2 ? ???? ?? a'\sub\f⎻* )^-1); apply refl2;] -| intros 2 (o a); apply rule #; +| intros 2 (o a); apply refl1; | intros 6; apply refl1;] qed. diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma b/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma index 30a8b476c..f2ce654ba 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-basic_topologies.ma @@ -15,37 +15,37 @@ include "o-algebra.ma". include "o-saturations.ma". -record basic_topology: Type2 ≝ - { carrbt:> OA; - A: carrbt ⇒ carrbt; - J: carrbt ⇒ carrbt; - A_is_saturation: is_o_saturation ? A; - J_is_reduction: is_o_reduction ? J; - compatibility: ∀U,V. (A U >< J V) = (U >< J V) +record Obasic_topology: Type2 ≝ + { Ocarrbt:> OA; + oA: Ocarrbt ⇒ Ocarrbt; + oJ: Ocarrbt ⇒ Ocarrbt; + oA_is_saturation: is_o_saturation ? oA; + oJ_is_reduction: is_o_reduction ? oJ; + Ocompatibility: ∀U,V. (oA U >< oJ V) = (U >< oJ V) }. -record continuous_relation (S,T: basic_topology) : Type2 ≝ - { cont_rel:> arrows2 OA S T; +record Ocontinuous_relation (S,T: Obasic_topology) : Type2 ≝ + { Ocont_rel:> arrows2 OA S T; (* reduces uses eq1, saturated uses eq!!! *) - reduced: ∀U. U = J ? U → cont_rel U = J ? (cont_rel U); - saturated: ∀U. U = A ? U → cont_rel⎻* U = A ? (cont_rel⎻* U) + Oreduced: ∀U. U = oJ ? U → Ocont_rel U = oJ ? (Ocont_rel U); + Osaturated: ∀U. U = oA ? U → Ocont_rel⎻* U = oA ? (Ocont_rel⎻* U) }. -definition continuous_relation_setoid: basic_topology → basic_topology → setoid2. +definition Ocontinuous_relation_setoid: Obasic_topology → Obasic_topology → setoid2. intros (S T); constructor 1; - [ apply (continuous_relation S T) + [ apply (Ocontinuous_relation S T) | constructor 1; [ alias symbol "eq" = "setoid2 eq". alias symbol "compose" = "category2 composition". - apply (λr,s:continuous_relation S T. (r⎻* ) ∘ (A S) = (s⎻* ∘ (A ?))); + apply (λr,s:Ocontinuous_relation S T. (r⎻* ) ∘ (oA S) = (s⎻* ∘ (oA ?))); | simplify; intros; apply refl2; | simplify; intros; apply sym2; apply e | simplify; intros; apply trans2; [2: apply e |3: apply e1; |1: skip]]] qed. -definition continuous_relation_of_continuous_relation_setoid: - ∀P,Q. continuous_relation_setoid P Q → continuous_relation P Q ≝ λP,Q,c.c. -coercion continuous_relation_of_continuous_relation_setoid. +definition Ocontinuous_relation_of_Ocontinuous_relation_setoid: + ∀P,Q. Ocontinuous_relation_setoid P Q → Ocontinuous_relation P Q ≝ λP,Q,c.c. +coercion Ocontinuous_relation_of_Ocontinuous_relation_setoid. (* theorem continuous_relation_eq': @@ -96,69 +96,69 @@ theorem continuous_relation_eq_inv': qed. *) -definition continuous_relation_comp: +definition Ocontinuous_relation_comp: ∀o1,o2,o3. - continuous_relation_setoid o1 o2 → - continuous_relation_setoid o2 o3 → - continuous_relation_setoid o1 o3. + Ocontinuous_relation_setoid o1 o2 → + Ocontinuous_relation_setoid o2 o3 → + Ocontinuous_relation_setoid o1 o3. intros (o1 o2 o3 r s); constructor 1; [ apply (s ∘ r); | intros; apply sym1; change in match ((s ∘ r) U) with (s (r U)); - apply (.= (reduced : ?)\sup -1); - [ apply (.= (reduced :?)); [ assumption | apply refl1 ] + apply (.= (Oreduced : ?)\sup -1); + [ apply (.= (Oreduced :?)); [ assumption | apply refl1 ] | apply refl1] | intros; apply sym1; change in match ((s ∘ r)⎻* U) with (s⎻* (r⎻* U)); - apply (.= (saturated : ?)\sup -1); - [ apply (.= (saturated : ?)); [ assumption | apply refl1 ] + apply (.= (Osaturated : ?)\sup -1); + [ apply (.= (Osaturated : ?)); [ assumption | apply refl1 ] | apply refl1]] qed. -definition BTop: category2. +definition OBTop: category2. constructor 1; - [ apply basic_topology - | apply continuous_relation_setoid + [ apply Obasic_topology + | apply Ocontinuous_relation_setoid | intro; constructor 1; [ apply id2 | intros; apply e; | intros; apply e;] | intros; constructor 1; - [ apply continuous_relation_comp; + [ apply Ocontinuous_relation_comp; | intros; simplify; - change with ((b⎻* ∘ a⎻* ) ∘ A o1 = ((b'⎻* ∘ a'⎻* ) ∘ A o1)); - change with (b⎻* ∘ (a⎻* ∘ A o1) = b'⎻* ∘ (a'⎻* ∘ A o1)); - change in e with (a⎻* ∘ A o1 = a'⎻* ∘ A o1); - change in e1 with (b⎻* ∘ A o2 = b'⎻* ∘ A o2); + change with ((b⎻* ∘ a⎻* ) ∘ oA o1 = ((b'⎻* ∘ a'⎻* ) ∘ oA o1)); + change with (b⎻* ∘ (a⎻* ∘ oA o1) = b'⎻* ∘ (a'⎻* ∘ oA o1)); + change in e with (a⎻* ∘ oA o1 = a'⎻* ∘ oA o1); + change in e1 with (b⎻* ∘ oA o2 = b'⎻* ∘ oA o2); apply (.= e‡#); intro x; - change with (eq1 ? (b⎻* (a'⎻* (A o1 x))) (b'⎻*(a'⎻* (A o1 x)))); - apply (.= †(saturated o1 o2 a' (A o1 x) ?)); [ - apply ((o_saturation_idempotent ?? (A_is_saturation o1) x)^-1);] - apply (.= (e1 (a'⎻* (A o1 x)))); - change with (eq1 ? (b'⎻* (A o2 (a'⎻* (A o1 x)))) (b'⎻*(a'⎻* (A o1 x)))); - apply (.= †(saturated o1 o2 a' (A o1 x):?)^-1); [ - apply ((o_saturation_idempotent ?? (A_is_saturation o1) x)^-1);] + change with (eq1 ? (b⎻* (a'⎻* (oA o1 x))) (b'⎻*(a'⎻* (oA o1 x)))); + apply (.= †(Osaturated o1 o2 a' (oA o1 x) ?)); [ + apply ((o_saturation_idempotent ?? (oA_is_saturation o1) x)^-1);] + apply (.= (e1 (a'⎻* (oA o1 x)))); + change with (eq1 ? (b'⎻* (oA o2 (a'⎻* (oA o1 x)))) (b'⎻*(a'⎻* (oA o1 x)))); + apply (.= †(Osaturated o1 o2 a' (oA o1 x):?)^-1); [ + apply ((o_saturation_idempotent ?? (oA_is_saturation o1) x)^-1);] apply rule #;] | intros; simplify; - change with (((a34⎻* ∘ a23⎻* ) ∘ a12⎻* ) ∘ A o1 = ((a34⎻* ∘ (a23⎻* ∘ a12⎻* )) ∘ A o1)); + change with (((a34⎻* ∘ a23⎻* ) ∘ a12⎻* ) ∘ oA o1 = ((a34⎻* ∘ (a23⎻* ∘ a12⎻* )) ∘ oA o1)); apply rule (#‡ASSOC ^ -1); | intros; simplify; - change with ((a⎻* ∘ (id2 ? o1)⎻* ) ∘ A o1 = a⎻* ∘ A o1); + change with ((a⎻* ∘ (id2 ? o1)⎻* ) ∘ oA o1 = a⎻* ∘ oA o1); apply (#‡(id_neutral_right2 : ?)); | intros; simplify; - change with (((id2 ? o2)⎻* ∘ a⎻* ) ∘ A o1 = a⎻* ∘ A o1); + change with (((id2 ? o2)⎻* ∘ a⎻* ) ∘ oA o1 = a⎻* ∘ oA o1); apply (#‡(id_neutral_left2 : ?));] qed. -definition basic_topology_of_BTop: objs2 BTop → basic_topology ≝ λx.x. -coercion basic_topology_of_BTop. +definition Obasic_topology_of_OBTop: objs2 OBTop → Obasic_topology ≝ λx.x. +coercion Obasic_topology_of_OBTop. -definition continuous_relation_setoid_of_arrows2_BTop : - ∀P,Q. arrows2 BTop P Q → continuous_relation_setoid P Q ≝ λP,Q,x.x. -coercion continuous_relation_setoid_of_arrows2_BTop. +definition Ocontinuous_relation_setoid_of_arrows2_OBTop : + ∀P,Q. arrows2 OBTop P Q → Ocontinuous_relation_setoid P Q ≝ λP,Q,x.x. +coercion Ocontinuous_relation_setoid_of_arrows2_OBTop. (* (*CSC: unused! *) diff --git a/helm/software/matita/contribs/formal_topology/overlap/r-o-basic_pairs.ma b/helm/software/matita/contribs/formal_topology/overlap/r-o-basic_pairs.ma index 1dcc1b91f..f90b8bbba 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/r-o-basic_pairs.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/r-o-basic_pairs.ma @@ -20,10 +20,13 @@ definition rOBP ≝ Apply ?? BP_to_OBP. include "o-basic_pairs_to_o-basic_topologies.ma". lemma rOR_full : - ∀rS,rT:rOBP.∀f:arrows2 BTop (OR (ℱ_2 rS)) (OR (ℱ_2 rT)). - exT22 ? (λg:arrows2 rOBP rS rT. + ∀s,t:rOBP.∀f:arrows2 OBTop (OR (ℱ_2 s)) (OR (ℱ_2 t)). + exT22 ? (λg:arrows2 rOBP s t. map_arrows2 ?? OR ?? (ℳ_2 g) = f). -intros; cases f (c H1 H2); simplify; +intros; cases f (h H1 H2); clear f; simplify; +change in ⊢ (? ? (λg:?.? ? ? (? ? ? %) ?)) with + (o_continuous_relation_of_o_relation_pair ?? (ℳ_2 g)). + STOP; -- 2.39.2