From b93b2e4f499c30b01b838f75a1e95df43920ffcc Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Sun, 28 Dec 2008 18:20:31 +0000 Subject: [PATCH] Final work for today. --- .../formal_topology/overlap/o-algebra.ma | 40 +++++++++---------- 1 file changed, 20 insertions(+), 20 deletions(-) diff --git a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma index 063e5988f..ce9583da3 100644 --- a/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma +++ b/helm/software/matita/contribs/formal_topology/overlap/o-algebra.ma @@ -185,8 +185,7 @@ record ORelation (P,Q : OAlgebra) : Type ≝ { or_prop3_ : ∀p,q. (or_f_ p >< q) = (p >< or_f_minus_ q) }. - -definition ORelation_setoid : OAlgebra → OAlgebra → setoid1. +definition ORelation_setoid : OAlgebra → OAlgebra → setoid2. intros (P Q); constructor 1; [ apply (ORelation P Q); @@ -207,53 +206,54 @@ constructor 1; | apply (.= (e3 a)); apply e7;]]] qed. -definition or_f_minus_star: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q. +definition or_f_minus_star: + ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). intros; constructor 1; [ apply or_f_minus_star_; - | intros; cases H; assumption] + | intros; cases e; assumption] qed. -definition or_f: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET P Q. +definition or_f: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (P ⇒ Q). intros; constructor 1; [ apply or_f_; - | intros; cases H; assumption] + | intros; cases e; assumption] qed. coercion or_f. -definition or_f_minus: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P. +definition or_f_minus: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). intros; constructor 1; [ apply or_f_minus_; - | intros; cases H; assumption] + | intros; cases e; assumption] qed. -definition or_f_star: ∀P,Q:OAlgebra.ORelation_setoid P Q ⇒ arrows1 SET Q P. +definition or_f_star: ∀P,Q:OAlgebra.unary_morphism2 (ORelation_setoid P Q) (Q ⇒ P). intros; constructor 1; [ apply or_f_star_; - | intros; cases H; assumption] + | intros; cases e; assumption] qed. -lemma arrows1_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → arrows1 SET P Q. -intros; apply (or_f ?? c); +lemma arrows1_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → (P ⇒ Q). +intros; apply (or_f ?? t); qed. -coercion arrows1_OF_ORelation_setoid nocomposites. +coercion arrows1_OF_ORelation_setoid. lemma umorphism_OF_ORelation_setoid : ∀P,Q. ORelation_setoid P Q → P ⇒ Q. -intros; apply (or_f ?? c); +intros; apply (or_f ?? t); qed. coercion umorphism_OF_ORelation_setoid. lemma uncurry_arrows : ∀B,C. arrows1 SET B C → B → C. -intros; apply ((fun_1 ?? c) t); +intros; apply ((fun1 ?? t) t1); qed. coercion uncurry_arrows 1. -lemma hint3 : ∀P,Q. arrows1 SET P Q → P ⇒ Q. intros; apply c;qed. -coercion hint3 nocomposites. +lemma hint6 : ∀P,Q. arrows1 SET P Q → P ⇒ Q. intros; apply t;qed. +coercion hint6. (* lemma hint2: OAlgebra → setoid. intros; apply (oa_P o). qed. @@ -270,9 +270,9 @@ notation > "r⎻*" non associative with precedence 90 for @{'OR_f_minus_star $r} notation "r \sup ⎻" non associative with precedence 90 for @{'OR_f_minus $r}. notation > "r⎻" non associative with precedence 90 for @{'OR_f_minus $r}. -interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun_1 __ (or_f_minus_star _ _) r). -interpretation "o-relation f⎻" 'OR_f_minus r = (fun_1 __ (or_f_minus _ _) r). -interpretation "o-relation f*" 'OR_f_star r = (fun_1 __ (or_f_star _ _) r). +interpretation "o-relation f⎻*" 'OR_f_minus_star r = (fun12 __ (or_f_minus_star _ _) r). +interpretation "o-relation f⎻" 'OR_f_minus r = (fun12 __ (or_f_minus _ _) r). +interpretation "o-relation f*" 'OR_f_star r = (fun12 __ (or_f_star _ _) r). definition or_prop1 : ∀P,Q:OAlgebra.∀F:ORelation_setoid P Q.∀p,q. (F p ≤ q) = (p ≤ F* q). -- 2.39.2