From c187392ea5521aa5daf86be2ed947016493fed79 Mon Sep 17 00:00:00 2001 From: Cristian Armentano Date: Mon, 10 Sep 2007 11:20:29 +0000 Subject: [PATCH] other simplifications. --- .../nat/propr_div_mod_lt_le_totient1_aux.ma | 31 +------------------ helm/software/matita/library/nat/totient1.ma | 18 ++++------- 2 files changed, 7 insertions(+), 42 deletions(-) diff --git a/helm/software/matita/library/nat/propr_div_mod_lt_le_totient1_aux.ma b/helm/software/matita/library/nat/propr_div_mod_lt_le_totient1_aux.ma index 975114306..7a68a5bd8 100644 --- a/helm/software/matita/library/nat/propr_div_mod_lt_le_totient1_aux.ma +++ b/helm/software/matita/library/nat/propr_div_mod_lt_le_totient1_aux.ma @@ -102,8 +102,7 @@ apply (le_times_to_le c (a/c) a) [ assumption | rewrite > (sym_times c (a/c)). rewrite > (NdivM_times_M_to_N a c) in \vdash (? % ?) - [ rewrite < (sym_times a c). - apply (O_lt_const_to_le_times_const). + [ apply (le_times_n c a ?). assumption | assumption | assumption @@ -152,18 +151,6 @@ cut(O \lt c) ] qed. -(* -theorem div_times_to_eqSO: \forall a,d:nat. -O \lt d \to a*d = d \to a = (S O). -intros. -apply (inj_times_r1 d) -[ assumption -| rewrite > sym_times. - rewrite < (times_n_SO d). - assumption -] -qed.*) - theorem div_mod_minus: \forall a,b:nat. O \lt b \to @@ -175,22 +162,6 @@ rewrite > (div_mod a b) in \vdash (? ? ? (? % ?)) ] qed. -(* -theorem sum_div_eq_div: \forall a,b,c:nat. -O \lt c \to b \lt c \to c \divides a \to (a+b) /c = a/c. -intros. -elim H2. -rewrite > H3. -rewrite > (sym_times c n2). -rewrite > (div_plus_times c n2 b) -[ rewrite > (div_times_ltO n2 c) - [ reflexivity - | assumption - ] -| assumption -] -qed. -*) (* A corollary to the division theorem (between natural numbers). * diff --git a/helm/software/matita/library/nat/totient1.ma b/helm/software/matita/library/nat/totient1.ma index b46120341..5ce43d4ac 100644 --- a/helm/software/matita/library/nat/totient1.ma +++ b/helm/software/matita/library/nat/totient1.ma @@ -362,17 +362,11 @@ cut (O \lt n) ] | assumption ] -| apply (nat_case1 n) - [ intros. - rewrite > H7 in H6. - rewrite > sym_times in H6. - simplify in H6. - rewrite > H6 in H. - apply False_ind. - change in H with ((S O) \le O). - apply (not_le_Sn_O O H) - | intros. - apply (lt_O_S m) +| apply (divides_to_lt_O n c) + [ assumption + | apply (witness n c b). + rewrite > sym_times. + assumption ] ] qed. @@ -573,7 +567,7 @@ apply (trans_eq ? ? | apply (sum_divisor_totient1_aux2); assumption ] - | apply (eqb_true_to_eq (gcd (i \mod n) (i/n)) (S O)). + | apply (eqb_true_to_eq (gcd (i \mod n) (i/n)) (S O)). apply (andb_true_true (eqb (gcd (i\mod n) (i/n)) (S O)) (leb (S (i\mod n)) (i/n)) -- 2.39.2