From cb35a54563cbc0a531fc9c84d887b9e98f2d9378 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Fri, 28 Aug 2009 08:11:35 +0000 Subject: [PATCH] alias bug revealed --- .../software/matita/nlibrary/topology/igft.ma | 42 ++++++------------- 1 file changed, 13 insertions(+), 29 deletions(-) diff --git a/helm/software/matita/nlibrary/topology/igft.ma b/helm/software/matita/nlibrary/topology/igft.ma index 8e05ca6f4..1fb59f067 100644 --- a/helm/software/matita/nlibrary/topology/igft.ma +++ b/helm/software/matita/nlibrary/topology/igft.ma @@ -1,4 +1,3 @@ - include "logic/connectives.ma". nrecord powerset (X : Type[0]) : Type[1] ≝ { char : X → CProp[0] }. @@ -74,8 +73,7 @@ nlet corec fish_rec (A:axiom_set) (U: Ω^A) ##] nqed. -alias symbol "covers" = "covers". -alias symbol "covers" = "covers". +(* ntheorem covers_elim2: ∀A: axiom_set. ∀U:Ω^A.∀P: A → CProp[0]. (∀a:A. a ∈ U → P a) → @@ -89,33 +87,19 @@ ntheorem covers_elim2: nassumption; ##] nqed. +*) -STOP - -theorem coreflexivity: ∀A:axiom_set.∀a:A.∀V. a ⋉ V → a ∈ V. - intros; - cases H; - assumption. -qed. - -theorem cotransitivity: - ∀A:axiom_set.∀a:A.∀U,V. a ⋉ U → (∀b:A. b ⋉ U → b ∈ V) → a ⋉ V. - intros; - apply (fish_rec ?? {a|a ⋉ U} ??? H); simplify; intros; - [ apply H1; apply H2; - | cases H2 in j; clear H2; intro i; - cases (H4 i); clear H4; exists[apply a3] assumption] -qed. - -theorem compatibility: ∀A:axiom_set.∀a:A.∀U,V. a ⋉ V → a ◃ U → U ⋉ V. - intros; - generalize in match H; clear H; - apply (covers_elim ?? {a|a ⋉ V → U ⋉ V} ??? H1); - clear H1; simplify; intros; - [ exists [apply x] assumption - | cases H2 in j H H1; clear H2 a1; intros; - cases (H1 i); clear H1; apply (H3 a1); assumption] -qed. +alias symbol "fish" (instance 1) = "fish set". +alias symbol "covers" = "covers". +ntheorem compatibility: ∀A:axiom_set.∀a:A.∀U,V. a ⋉ V → a ◃ U → U ⋉ V. +#A; #a; #U; #V; #aV; #aU; ngeneralize in match aV; (* clear aV *) +nelim aU; +##[ #b; #bU; #bV; napply ex_intro; ##[ napply b] napply conj; nassumption; +##| #b; #i; #CaiU; #H; #bV; ncases bV in i CaiU H; + #c; #cV; #CciV; #i; #CciU; #H; ncases (CciV i); #x; *; #xCci; #xV; + napply H; nassumption; +##] +nqed. definition leq ≝ λA:axiom_set.λa,b:A. a ◃ {y|b=y}. -- 2.39.2