From cc625286bcdebacd9d08ad8bc7435e02e1d1fba4 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Mon, 2 Oct 2006 13:56:53 +0000 Subject: [PATCH] ... --- matita/tests/paramodulation/BOO075-1.ma | 85 +++++++++++++++++++++++++ matita/tests/paramodulation/group.ma | 4 +- 2 files changed, 87 insertions(+), 2 deletions(-) create mode 100644 matita/tests/paramodulation/BOO075-1.ma diff --git a/matita/tests/paramodulation/BOO075-1.ma b/matita/tests/paramodulation/BOO075-1.ma new file mode 100644 index 000000000..8368263d2 --- /dev/null +++ b/matita/tests/paramodulation/BOO075-1.ma @@ -0,0 +1,85 @@ +set "baseuri" "cic:/matita/TPTP/BOO075-1". + +inductive eq (A:Type) (x:A) : A \to Prop \def refl_eq : eq A x x. + +theorem sym_eq : \forall A:Type.\forall x,y:A. eq A x y \to eq A y x. +intros.elim H. apply refl_eq. +qed. + +theorem eq_elim_r: + \forall A:Type.\forall x:A. \forall P: A \to Prop. + P x \to \forall y:A. eq A y x \to P y. +intros. elim (sym_eq ? ? ? H1).assumption. +qed. + +theorem trans_eq : + \forall A:Type.\forall x,y,z:A. eq A x y \to eq A y z \to eq A x z. +intros.elim H1.assumption. +qed. + +default "equality" + cic:/matita/TPTP/BOO075-1/eq.ind + cic:/matita/TPTP/BOO075-1/sym_eq.con + cic:/matita/TPTP/BOO075-1/trans_eq.con + cic:/matita/TPTP/BOO075-1/eq_ind.con + cic:/matita/TPTP/BOO075-1/eq_elim_r.con + cic:/matita/TPTP/BOO075-1/eq_f.con + cic:/matita/TPTP/BOO075-1/eq_f1.con. + +theorem eq_f: \forall A,B:Type.\forall f:A\to B. + \forall x,y:A. eq A x y \to eq B (f x) (f y). +intros.elim H.reflexivity. +qed. + +theorem eq_f1: \forall A,B:Type.\forall f:A\to B. + \forall x,y:A. eq A x y \to eq B (f y) (f x). +intros.elim H.reflexivity. +qed. + +inductive ex (A:Type) (P:A \to Prop) : Prop \def + ex_intro: \forall x:A. P x \to ex A P. +interpretation "exists" 'exists \eta.x = + (cic:/matita/TPTP/BOO075-1/ex.ind#xpointer(1/1) _ x). + +notation < "hvbox(\exists ident i opt (: ty) break . p)" + right associative with precedence 20 +for @{ 'exists ${default + @{\lambda ${ident i} : $ty. $p)} + @{\lambda ${ident i} . $p}}}. + + +(* Inclusion of: BOO075-1.p *) +(* -------------------------------------------------------------------------- *) +(* File : BOO075-1 : TPTP v3.1.1. Released v2.6.0. *) +(* Domain : Boolean Algebra *) +(* Problem : Sh-1 is a single axiom for Boolean algebra, part 1 *) +(* Version : [EF+02] axioms. *) +(* English : *) +(* Refs : [EF+02] Ernst et al. (2002), More First-order Test Problems in *) +(* : [MV+02] McCune et al. (2002), Short Single Axioms for Boolean *) +(* Source : [TPTP] *) +(* Names : *) +(* Status : Unsatisfiable *) +(* Rating : 0.00 v2.6.0 *) +(* Syntax : Number of clauses : 2 ( 0 non-Horn; 2 unit; 1 RR) *) +(* Number of atoms : 2 ( 2 equality) *) +(* Maximal clause size : 1 ( 1 average) *) +(* Number of predicates : 1 ( 0 propositional; 2-2 arity) *) +(* Number of functors : 3 ( 2 constant; 0-2 arity) *) +(* Number of variables : 3 ( 1 singleton) *) +(* Maximal term depth : 5 ( 2 average) *) +(* Comments : A UEQ part of BOO039-1 *) +(* -------------------------------------------------------------------------- *) +theorem prove_meredith_2_basis_1: + \forall Univ:Set. +\forall a:Univ. +\forall b:Univ. +\forall nand:Univ\rarr Univ\rarr Univ. +\forall H0:\forall A:Univ.\forall B:Univ.\forall C:Univ.eq Univ (nand (nand A (nand (nand B A) A)) (nand B (nand C A))) B.eq Univ (nand (nand a a) (nand b a)) a +. +intros. +auto paramodulation timeout=600. +try assumption. +print proofterm. +qed. +(* -------------------------------------------------------------------------- *) \ No newline at end of file diff --git a/matita/tests/paramodulation/group.ma b/matita/tests/paramodulation/group.ma index d4c6bf879..cd49860fc 100644 --- a/matita/tests/paramodulation/group.ma +++ b/matita/tests/paramodulation/group.ma @@ -38,7 +38,7 @@ theorem GRP049_simple: \forall mult: A \to A \to A. \forall H: (\forall x,y,z:A.mult z (inv (mult (inv (mult (inv (mult z y)) x)) (inv (mult y (mult (inv y) y))))) = x). \forall a,b:A. mult (inv a) a = mult (inv b) b. -intros.auto paramodulation; exact a. +intros.auto paramodulation; qed. theorem GRP049 : @@ -47,5 +47,5 @@ theorem GRP049 : \forall mult: A \to A \to A. \forall H: (\forall x,y,z:A.mult z (inv (mult (inv (mult (inv (mult z y)) x)) (inv (mult y (mult (inv y) y))))) = x). \forall a,b:A. mult a (inv a)= mult b (inv b). -intros.auto paramodulation;exact a. +intros.auto paramodulation timeout = 600;exact a. qed. -- 2.39.2