From d1c48262d83ff5917fe5ad0d5cbbed8d686c046a Mon Sep 17 00:00:00 2001 From: Ferruccio Guidi Date: Mon, 25 Jul 2011 20:16:26 +0000 Subject: [PATCH] - inversion lemmas for tpr completed! - bug fix in lpr interpretation --- matita/matita/lib/lambda-delta/ground.ma | 6 + .../lib/lambda-delta/reduction/lpr_defs.ma | 2 +- .../lib/lambda-delta/reduction/tpr_defs.ma | 159 ++++++++++++++++-- .../lib/lambda-delta/reduction/tpr_tpr.ma | 55 +++++- matita/matita/lib/lambda-delta/xoa_defs.ma | 18 ++ .../matita/lib/lambda-delta/xoa_notation.ma | 12 ++ 6 files changed, 232 insertions(+), 20 deletions(-) diff --git a/matita/matita/lib/lambda-delta/ground.ma b/matita/matita/lib/lambda-delta/ground.ma index d39b3faf4..54f9da02a 100644 --- a/matita/matita/lib/lambda-delta/ground.ma +++ b/matita/matita/lib/lambda-delta/ground.ma @@ -21,6 +21,12 @@ lemma plus_plus_comm_23: ∀m,n,p. m + n + p = m + p + n. lemma minus_plus_comm: ∀a,b,c. a - b - c = a - (c + b). // qed. +lemma arith8: ∀a,b. a < a + b + 1. +// qed. + +lemma arith9: ∀a,b,c. c < a + (b + c + 1) + 1. +// qed. + lemma minus_le: ∀m,n. m - n ≤ m. /2/ qed. diff --git a/matita/matita/lib/lambda-delta/reduction/lpr_defs.ma b/matita/matita/lib/lambda-delta/reduction/lpr_defs.ma index dab96f2dd..241119108 100644 --- a/matita/matita/lib/lambda-delta/reduction/lpr_defs.ma +++ b/matita/matita/lib/lambda-delta/reduction/lpr_defs.ma @@ -24,7 +24,7 @@ inductive lpr: lenv → lenv → Prop ≝ interpretation "context-free parallel reduction (environment)" - 'PR L1 L2 = (lpr L1 L2). + 'PRed L1 L2 = (lpr L1 L2). (* Basic inversion lemmas ***************************************************) diff --git a/matita/matita/lib/lambda-delta/reduction/tpr_defs.ma b/matita/matita/lib/lambda-delta/reduction/tpr_defs.ma index bddd93017..498fbb744 100644 --- a/matita/matita/lib/lambda-delta/reduction/tpr_defs.ma +++ b/matita/matita/lib/lambda-delta/reduction/tpr_defs.ma @@ -45,23 +45,160 @@ lemma tpr_refl: ∀T. T ⇒ T. #I elim I -I /2/ qed. -(* The basic inversion lemmas ***********************************************) +(* Basic inversion lemmas ***************************************************) + +lemma tpr_inv_sort1_aux: ∀U1,U2. U1 ⇒ U2 → ∀k. U1 = ⋆k → U2 = ⋆k. +#U1 #U2 * -U1 U2 +[ #k0 #k #H destruct -k0 // +| #i #k #H destruct +| #I #V1 #V2 #T1 #T2 #_ #_ #k #H destruct +| #I #V1 #V2 #T1 #T2 #_ #_ #k #H destruct +| #V1 #V2 #W #T1 #T2 #_ #_ #k #H destruct +| #V1 #V2 #T1 #T2 #T #_ #_ #_ #k #H destruct +| #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #k #H destruct +| #V #T #T1 #T2 #_ #_ #k #H destruct +| #V #T1 #T2 #_ #k #H destruct +] +qed. + +lemma tpr_inv_sort1: ∀k,U2. ⋆k ⇒ U2 → U2 = ⋆k. +/2/ qed. + +lemma tpr_inv_lref1_aux: ∀U1,U2. U1 ⇒ U2 → ∀i. U1 = #i → U2 = #i. +#U1 #U2 * -U1 U2 +[ #k #i #H destruct +| #j #i #H destruct -j // +| #I #V1 #V2 #T1 #T2 #_ #_ #i #H destruct +| #I #V1 #V2 #T1 #T2 #_ #_ #i #H destruct +| #V1 #V2 #W #T1 #T2 #_ #_ #i #H destruct +| #V1 #V2 #T1 #T2 #T #_ #_ #_ #i #H destruct +| #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #i #H destruct +| #V #T #T1 #T2 #_ #_ #i #H destruct +| #V #T1 #T2 #_ #i #H destruct +] +qed. + +lemma tpr_inv_lref1: ∀i,U2. #i ⇒ U2 → U2 = #i. +/2/ qed. + +lemma tpr_inv_abbr1_aux: ∀U1,U2. U1 ⇒ U2 → ∀V1,T1. U1 = 𝕚{Abbr} V1. T1 → + ∨∨ ∃∃V2,T2. V1 ⇒ V2 & T1 ⇒ T2 & U2 = 𝕚{Abbr} V2. T2 + | ∃∃V2,T2,T. V1 ⇒ V2 & T1 ⇒ T2 & + ⋆. 𝕓{Abbr} V2 ⊢ T2 [0, 1] ≫ T & + U2 = 𝕚{Abbr} V2. T + | ∃∃T. ↑[0,1] T ≡ T1 & T ⇒ U2. +#U1 #U2 * -U1 U2 +[ #k #V #T #H destruct +| #i #V #T #H destruct +| #I #V1 #V2 #T1 #T2 #HV12 #HT12 #V #T #H destruct -I V1 T1 /3 width=5/ +| #I #V1 #V2 #T1 #T2 #_ #_ #V #T #H destruct +| #V1 #V2 #W #T1 #T2 #_ #_ #V #T #H destruct +| #V1 #V2 #T1 #T2 #T #HV12 #HT12 #HT2 #V0 #T0 #H destruct -V1 T1 /3 width=7/ +| #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #V0 #T0 #H destruct +| #V #T #T1 #T2 #HT1 #HT12 #V0 #T0 #H destruct -V T /3/ +| #V #T1 #T2 #_ #V0 #T0 #H destruct +] +qed. + +lemma tpr_inv_abbr1: ∀V1,T1,U2. 𝕚{Abbr} V1. T1 ⇒ U2 → + ∨∨ ∃∃V2,T2. V1 ⇒ V2 & T1 ⇒ T2 & U2 = 𝕚{Abbr} V2. T2 + | ∃∃V2,T2,T. V1 ⇒ V2 & T1 ⇒ T2 & + ⋆. 𝕓{Abbr} V2 ⊢ T2 [0, 1] ≫ T & + U2 = 𝕚{Abbr} V2. T + | ∃∃T. ↑[0,1] T ≡ T1 & tpr T U2. +/2/ qed. + +lemma tpr_inv_abst1_aux: ∀U1,U2. U1 ⇒ U2 → ∀V1,T1. U1 = 𝕚{Abst} V1. T1 → + ∃∃V2,T2. V1 ⇒ V2 & T1 ⇒ T2 & U2 = 𝕚{Abst} V2. T2. +#U1 #U2 * -U1 U2 +[ #k #V #T #H destruct +| #i #V #T #H destruct +| #I #V1 #V2 #T1 #T2 #HV12 #HT12 #V #T #H destruct -I V1 T1 /2 width=5/ +| #I #V1 #V2 #T1 #T2 #_ #_ #V #T #H destruct +| #V1 #V2 #W #T1 #T2 #_ #_ #V #T #H destruct +| #V1 #V2 #T1 #T2 #T #_ #_ #_ #V0 #T0 #H destruct +| #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #V0 #T0 #H destruct +| #V #T #T1 #T2 #_ #_ #V0 #T0 #H destruct +| #V #T1 #T2 #_ #V0 #T0 #H destruct +] +qed. + +lemma tpr_inv_abst1: ∀V1,T1,U2. 𝕚{Abst} V1. T1 ⇒ U2 → + ∃∃V2,T2. V1 ⇒ V2 & T1 ⇒ T2 & U2 = 𝕚{Abst} V2. T2. +/2/ qed. + +lemma tpr_inv_appl1_aux: ∀U1,U2. U1 ⇒ U2 → ∀V1,U0. U1 = 𝕚{Appl} V1. U0 → + ∨∨ ∃∃V2,T2. V1 ⇒ V2 & U0 ⇒ T2 & + U2 = 𝕚{Appl} V2. T2 + | ∃∃V2,W,T1,T2. V1 ⇒ V2 & T1 ⇒ T2 & + U0 = 𝕚{Abst} W. T1 & + U2 = 𝕓{Abbr} V2. T2 + | ∃∃V2,V,W1,W2,T1,T2. V1 ⇒ V2 & W1 ⇒ W2 & T1 ⇒ T2 & + ↑[0,1] V2 ≡ V & + U0 = 𝕚{Abbr} W1. T1 & + U2 = 𝕚{Abbr} W2. 𝕚{Appl} V. T2. +#U1 #U2 * -U1 U2 +[ #k #V #T #H destruct +| #i #V #T #H destruct +| #I #V1 #V2 #T1 #T2 #_ #_ #V #T #H destruct +| #I #V1 #V2 #T1 #T2 #HV12 #HT12 #V #T #H destruct -I V1 T1 /3 width=5/ +| #V1 #V2 #W #T1 #T2 #HV12 #HT12 #V #T #H destruct -V1 T /3 width=8/ +| #V1 #V2 #T1 #T2 #T #_ #_ #_ #V0 #T0 #H destruct +| #V #V1 #V2 #W1 #W2 #T1 #T2 #HV12 #HV2 #HW12 #HT12 #V0 #T0 #H + destruct -V1 T0 /3 width=12/ +| #V #T #T1 #T2 #_ #_ #V0 #T0 #H destruct +| #V #T1 #T2 #_ #V0 #T0 #H destruct +] +qed. + +lemma tpr_inv_appl1: ∀V1,U0,U2. 𝕚{Appl} V1. U0 ⇒ U2 → + ∨∨ ∃∃V2,T2. V1 ⇒ V2 & U0 ⇒ T2 & + U2 = 𝕚{Appl} V2. T2 + | ∃∃V2,W,T1,T2. V1 ⇒ V2 & T1 ⇒ T2 & + U0 = 𝕚{Abst} W. T1 & + U2 = 𝕓{Abbr} V2. T2 + | ∃∃V2,V,W1,W2,T1,T2. V1 ⇒ V2 & W1 ⇒ W2 & T1 ⇒ T2 & + ↑[0,1] V2 ≡ V & + U0 = 𝕚{Abbr} W1. T1 & + U2 = 𝕚{Abbr} W2. 𝕚{Appl} V. T2. +/2/ qed. + +lemma tpr_inv_cast1_aux: ∀U1,U2. U1 ⇒ U2 → ∀V1,T1. U1 = 𝕚{Cast} V1. T1 → + (∃∃V2,T2. V1 ⇒ V2 & T1 ⇒ T2 & U2 = 𝕚{Cast} V2. T2) + ∨ T1 ⇒ U2. +#U1 #U2 * -U1 U2 +[ #k #V #T #H destruct +| #i #V #T #H destruct +| #I #V1 #V2 #T1 #T2 #_ #_ #V #T #H destruct +| #I #V1 #V2 #T1 #T2 #HV12 #HT12 #V #T #H destruct -I V1 T1 /3 width=5/ +| #V1 #V2 #W #T1 #T2 #_ #_ #V #T #H destruct +| #V1 #V2 #T1 #T2 #T #_ #_ #_ #V0 #T0 #H destruct +| #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #V0 #T0 #H destruct +| #V #T #T1 #T2 #_ #_ #V0 #T0 #H destruct +| #V #T1 #T2 #HT12 #V0 #T0 #H destruct -V T1 /2/ +] +qed. + +lemma tpr_inv_cast1: ∀V1,T1,U2. 𝕚{Cast} V1. T1 ⇒ U2 → + (∃∃V2,T2. V1 ⇒ V2 & T1 ⇒ T2 & U2 = 𝕚{Cast} V2. T2) + ∨ T1 ⇒ U2. +/2/ qed. lemma tpr_inv_lref2_aux: ∀T1,T2. T1 ⇒ T2 → ∀i. T2 = #i → ∨∨ T1 = #i | ∃∃V,T,T0. ↑[O,1] T0 ≡ T & T0 ⇒ #i & - T1 = 𝕓{Abbr} V. T - | ∃∃V,T. T ⇒ #i & T1 = 𝕗{Cast} V. T. -#T1 #T2 #H elim H -H T1 T2 + T1 = 𝕚{Abbr} V. T + | ∃∃V,T. T ⇒ #i & T1 = 𝕚{Cast} V. T. +#T1 #T2 * -T1 T2 [ #k #i #H destruct | #j #i /2/ -| #I #V1 #V2 #T1 #T2 #_ #_ #_ #_ #i #H destruct -| #I #V1 #V2 #T1 #T2 #_ #_ #_ #_ #i #H destruct -| #V1 #V2 #W #T1 #T2 #_ #_ #_ #_ #i #H destruct -| #V1 #V2 #T1 #T2 #T #_ #_ #_ #_ #_ #i #H destruct -| #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #_ #_ #_ #i #H destruct -| #V #T #T1 #T2 #HT1 #HT12 #_ #i #H destruct /3 width=6/ -| #V #T1 #T2 #HT12 #_ #i #H destruct /3/ +| #I #V1 #V2 #T1 #T2 #_ #_ #i #H destruct +| #I #V1 #V2 #T1 #T2 #_ #_ #i #H destruct +| #V1 #V2 #W #T1 #T2 #_ #_ #i #H destruct +| #V1 #V2 #T1 #T2 #T #_ #_ #_ #i #H destruct +| #V #V1 #V2 #W1 #W2 #T1 #T2 #_ #_ #_ #_ #i #H destruct +| #V #T #T1 #T2 #HT1 #HT12 #i #H destruct /3 width=6/ +| #V #T1 #T2 #HT12 #i #H destruct /3/ ] qed. diff --git a/matita/matita/lib/lambda-delta/reduction/tpr_tpr.ma b/matita/matita/lib/lambda-delta/reduction/tpr_tpr.ma index 4451ec892..2bc32505f 100644 --- a/matita/matita/lib/lambda-delta/reduction/tpr_tpr.ma +++ b/matita/matita/lib/lambda-delta/reduction/tpr_tpr.ma @@ -33,8 +33,7 @@ lemma tpr_conf_bind_bind: ∃∃T0. 𝕓{I1} V12. T12 ⇒ T0 & 𝕓{I1} V22. T22 ⇒ T0. #I1 #V11 #V12 #T11 #T12 #V22 #T22 #IH #HV1 #HT1 #HV2 #HT2 elim (IH … HV1 … HV2) -HV1 HV2 // #V #HV1 #HV2 -elim (IH … HT1 … HT2) -HT1 HT2 // #T #HT1 #HT2 -/3 width=5/ +elim (IH … HT1 … HT2) -HT1 HT2 IH /3 width=5/ qed. lemma tpr_conf_bind_zeta: @@ -62,10 +61,35 @@ lemma tpr_conf_flat_flat: ∃∃T0. 𝕗{I1} V12. T12 ⇒ T0 & 𝕗{I1} V22. T22 ⇒ T0. #I1 #V11 #V12 #T11 #T12 #V22 #T22 #IH #HV1 #HT1 #HV2 #HT2 elim (IH … HV1 … HV2) -HV1 HV2 // #V #HV1 #HV2 -elim (IH … HT1 … HT2) -HT1 HT2 // #T #HT1 #HT2 -/3 width=5/ +elim (IH … HT1 … HT2) -HT1 HT2 /3 width=5/ qed. +lemma tpr_conf_flat_beta: + ∀V11,V12,T12,V22,W2,T21,T22. ( + ∀T1. #T1 < #V11 + (#W2 + #T21 + 1) + 1 → + ∀T3,T4. T1 ⇒ T3 → T1 ⇒ T4 → + ∃∃T0. T3 ⇒ T0 & T4 ⇒ T0 + ) → + V11 ⇒ V12 → V11 ⇒ V22 → + T21 ⇒ T22 → 𝕓{Abst} W2. T21 ⇒ T12 → + ∃∃T0. 𝕗{Appl} V12. T12 ⇒ T0 & 𝕓{Abbr} V22. T22 ⇒ T0. +#V11 #V12 #T12 #V22 #W2 #T21 #T22 #IH #HV1 #HV2 #HT1 #HT2 +elim (tpr_inv_abst1 … HT2) -HT2 #W1 #T1 #HW21 #HT21 #H destruct -T12; +elim (IH … HV1 … HV2) -HV1 HV2 // #V #HV12 #HV22 +elim (IH … HT21 … HT1) -HT21 HT1 IH /3 width=5/ +qed. + +lemma tpr_conf_flat_theta: + ∀V11,V12,T12,V2,V22,W21,W22,T21,T22. ( + ∀T1. #T1 < #V11 + (#W21 + #T21 + 1) + 1 → + ∀T3,T4. T1 ⇒ T3 → T1 ⇒ T4 → + ∃∃T0. T3 ⇒ T0 & T4 ⇒T0 + ) → + V11 ⇒ V12 → V11 ⇒ V22 → ↑[O,1] V22 ≡ V2 → + W21 ⇒ W22 → T21 ⇒ T22 → 𝕓{Abbr} W21. T21 ⇒ T12 → + ∃∃T0. 𝕗{Appl} V12. T12 ⇒ T0 & 𝕓{Abbr} W22. 𝕗{Appl} V2. T22 ⇒T0. + + (* Confluence ***************************************************************) lemma tpr_conf_aux: @@ -140,7 +164,7 @@ lemma tpr_conf_aux: (* case 27: bind, tau (excluded) *) | #V2 #T21 #T22 #_ #H1 #H2 destruct ] -| #I1 #V11 #V12 #T11 #T12 #HV112 #HT112 * -U2 T2 +| #I1 #V11 #V12 #T11 #T12 #HV112 #HT112 * -U2 T2 (* case 28: flat, sort (excluded) *) [ #k2 #H1 #H2 destruct (* case 29: flat, lref (excluded) *) @@ -152,9 +176,24 @@ lemma tpr_conf_aux: destruct -T I2 V21 T21 /3 width=7/ (* case 32: flat, beta *) | #V21 #V22 #W2 #T21 #T22 #HV212 #HT212 #H1 #H2 - destruct -I1 V21 T11 T; - -theorem pr_conf: ∀T,T1,T2. T ⇒ T1 → T ⇒ T2 → + destruct -I1 V21 T11 T /3 width=8/ (**) (* slow *) +(* case 33: flat, delta (excluded) *) + | #V21 #V22 #T21 #T22 #T20 #_ #_ #_ #H1 #H2 destruct +(* case 34: flat, theta *) + | #V2 #V21 #V22 #W21 #W22 #T21 #T22 #H212 #HV222 #HW212 #HT212 #H1 #H2 + destruct -I1 V21 T11 T // + +lemma tpr_conf_flat_theta: + ∀V11,V12,T12,V2,V22,W21,W22,T21,T22. ( + ∀T1. #T1 < #V11 + (#W21 + #T21 + 1) + 1 → + ∀T3,T4. T1 ⇒ T3 → T1 ⇒ T4 → + ∃∃T0. T3 ⇒ T0 & T4 ⇒T0 + ) → + V11 ⇒ V12 → V11 ⇒ V22 → ↑[O,1] V22 ≡ V2 → + W21 ⇒ W22 → T21 ⇒ T22 → 𝕓{Abbr} W21. T21 ⇒ T12 → + ∃∃T0. 𝕗{Appl} V12. T12 ⇒ T0 & 𝕓{Abbr} W22. 𝕗{Appl} V2. T22 ⇒T0. + +theorem tpr_conf: ∀T,T1,T2. T ⇒ T1 → T ⇒ T2 → ∃∃T0. T1 ⇒ T0 & T2 ⇒ T0. #T @(tw_wf_ind … T) -T /3 width=8/ qed. diff --git a/matita/matita/lib/lambda-delta/xoa_defs.ma b/matita/matita/lib/lambda-delta/xoa_defs.ma index 5e66ef789..af9ba3708 100644 --- a/matita/matita/lib/lambda-delta/xoa_defs.ma +++ b/matita/matita/lib/lambda-delta/xoa_defs.ma @@ -40,6 +40,24 @@ inductive ex3_3 (A0,A1,A2:Type[0]) (P0,P1,P2:A0→A1→A2→Prop) : Prop ≝ interpretation "multiple existental quantifier (3, 3)" 'Ex P0 P1 P2 = (ex3_3 ? ? ? P0 P1 P2). +inductive ex4_3 (A0,A1,A2:Type[0]) (P0,P1,P2,P3:A0→A1→A2→Prop) : Prop ≝ + | ex4_3_intro: ∀x0,x1,x2. P0 x0 x1 x2 → P1 x0 x1 x2 → P2 x0 x1 x2 → P3 x0 x1 x2 → ex4_3 ? ? ? ? ? ? ? +. + +interpretation "multiple existental quantifier (4, 3)" 'Ex P0 P1 P2 P3 = (ex4_3 ? ? ? P0 P1 P2 P3). + +inductive ex4_4 (A0,A1,A2,A3:Type[0]) (P0,P1,P2,P3:A0→A1→A2→A3→Prop) : Prop ≝ + | ex4_4_intro: ∀x0,x1,x2,x3. P0 x0 x1 x2 x3 → P1 x0 x1 x2 x3 → P2 x0 x1 x2 x3 → P3 x0 x1 x2 x3 → ex4_4 ? ? ? ? ? ? ? ? +. + +interpretation "multiple existental quantifier (4, 4)" 'Ex P0 P1 P2 P3 = (ex4_4 ? ? ? ? P0 P1 P2 P3). + +inductive ex6_6 (A0,A1,A2,A3,A4,A5:Type[0]) (P0,P1,P2,P3,P4,P5:A0→A1→A2→A3→A4→A5→Prop) : Prop ≝ + | ex6_6_intro: ∀x0,x1,x2,x3,x4,x5. P0 x0 x1 x2 x3 x4 x5 → P1 x0 x1 x2 x3 x4 x5 → P2 x0 x1 x2 x3 x4 x5 → P3 x0 x1 x2 x3 x4 x5 → P4 x0 x1 x2 x3 x4 x5 → P5 x0 x1 x2 x3 x4 x5 → ex6_6 ? ? ? ? ? ? ? ? ? ? ? ? +. + +interpretation "multiple existental quantifier (6, 6)" 'Ex P0 P1 P2 P3 P4 P5 = (ex6_6 ? ? ? ? ? ? P0 P1 P2 P3 P4 P5). + inductive or3 (P0,P1,P2:Prop) : Prop ≝ | or3_intro0: P0 → or3 ? ? ? | or3_intro1: P1 → or3 ? ? ? diff --git a/matita/matita/lib/lambda-delta/xoa_notation.ma b/matita/matita/lib/lambda-delta/xoa_notation.ma index f21488be3..18b3c0293 100644 --- a/matita/matita/lib/lambda-delta/xoa_notation.ma +++ b/matita/matita/lib/lambda-delta/xoa_notation.ma @@ -30,6 +30,18 @@ notation "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & non associative with precedence 20 for @{ 'Ex (λ${ident x0},${ident x1},${ident x2}.$P0) (λ${ident x0},${ident x1},${ident x2}.$P1) (λ${ident x0},${ident x1},${ident x2}.$P2) }. +notation "hvbox(∃∃ ident x0 , ident x1 , ident x2 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0},${ident x1},${ident x2}.$P0) (λ${ident x0},${ident x1},${ident x2}.$P1) (λ${ident x0},${ident x1},${ident x2}.$P2) (λ${ident x0},${ident x1},${ident x2}.$P3) }. + +notation "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0},${ident x1},${ident x2},${ident x3}.$P0) (λ${ident x0},${ident x1},${ident x2},${ident x3}.$P1) (λ${ident x0},${ident x1},${ident x2},${ident x3}.$P2) (λ${ident x0},${ident x1},${ident x2},${ident x3}.$P3) }. + +notation "hvbox(∃∃ ident x0 , ident x1 , ident x2 , ident x3 , ident x4 , ident x5 break . term 19 P0 break & term 19 P1 break & term 19 P2 break & term 19 P3 break & term 19 P4 break & term 19 P5)" + non associative with precedence 20 + for @{ 'Ex (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P0) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P1) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P2) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P3) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P4) (λ${ident x0},${ident x1},${ident x2},${ident x3},${ident x4},${ident x5}.$P5) }. + notation "hvbox(∨∨ term 19 P0 break | term 19 P1 break | term 19 P2)" non associative with precedence 20 for @{ 'Or $P0 $P1 $P2 }. -- 2.39.2