From d4e183088f0652c276fbd98272822af845aa9fd2 Mon Sep 17 00:00:00 2001 From: Andrea Asperti Date: Mon, 17 Dec 2012 11:08:59 +0000 Subject: [PATCH] restructuring --- matita/matita/lib/arithmetics/big_pi.ma | 402 ++---------- matita/matita/lib/arithmetics/bigops.ma | 707 --------------------- matita/matita/lib/arithmetics/binomial.ma | 95 ++- matita/matita/lib/arithmetics/sigma_pi.ma | 737 ++-------------------- 4 files changed, 196 insertions(+), 1745 deletions(-) diff --git a/matita/matita/lib/arithmetics/big_pi.ma b/matita/matita/lib/arithmetics/big_pi.ma index 0c818e6de..3dc9cb31d 100644 --- a/matita/matita/lib/arithmetics/big_pi.ma +++ b/matita/matita/lib/arithmetics/big_pi.ma @@ -12,6 +12,62 @@ include "arithmetics/primes.ma". include "arithmetics/bigops.ma". +(* Sigma e Pi *) + +notation "∑_{ ident i < n | p } f" + with precedence 80 +for @{'bigop $n plus 0 (λ${ident i}. $p) (λ${ident i}. $f)}. + +notation "∑_{ ident i < n } f" + with precedence 80 +for @{'bigop $n plus 0 (λ${ident i}.true) (λ${ident i}. $f)}. + +notation "∑_{ ident j ∈ [a,b[ } f" + with precedence 80 +for @{'bigop ($b-$a) plus 0 (λ${ident j}.((λ${ident j}.true) (${ident j}+$a))) + (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. + +notation "∑_{ ident j ∈ [a,b[ | p } f" + with precedence 80 +for @{'bigop ($b-$a) plus 0 (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a))) + (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. + +notation "∏_{ ident i < n | p} f" + with precedence 80 +for @{'bigop $n times 1 (λ${ident i}.$p) (λ${ident i}. $f)}. + +notation "∏_{ ident i < n } f" + with precedence 80 +for @{'bigop $n times 1 (λ${ident i}.true) (λ${ident i}. $f)}. + +notation "∏_{ ident j ∈ [a,b[ } f" + with precedence 80 +for @{'bigop ($b-$a) times 1 (λ${ident j}.((λ${ident j}.true) (${ident j}+$a))) + (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. + +notation "∏_{ ident j ∈ [a,b[ | p } f" + with precedence 80 +for @{'bigop ($b-$a) times 1 (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a))) + (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. + +(* instances of associative and commutative operations *) + +definition plusA ≝ mk_Aop nat 0 plus (λa.refl ? a) (λn.sym_eq ??? (plus_n_O n)) + (λa,b,c.sym_eq ??? (associative_plus a b c)). + +definition plusAC ≝ mk_ACop nat 0 plusA commutative_plus. + +definition timesA ≝ mk_Aop nat 1 times + (λa.sym_eq ??? (plus_n_O a)) (λn.sym_eq ??? (times_n_1 n)) + (λa,b,c.sym_eq ??? (associative_times a b c)). + +definition timesAC ≝ mk_ACop nat 1 timesA commutative_times. + +definition natD ≝ mk_Dop nat 0 plusAC times (λn.(sym_eq ??? (times_n_O n))) + distributive_times_plus. + +(********************************************************) + theorem sigma_const: ∀n:nat. ∑_{ibigop_Strue // qed. @@ -61,349 +117,3 @@ theorem exp_pi: ∀n,m,p,f. |#m1 #Hind >times_pi >Hind % ] qed. - -(* -theorem true_to_pi_p_Sn: ∀n,p,g. - p n = true \to pi_p (S n) p g = (g n)*(pi_p n p g). -intros. -unfold pi_p. -apply true_to_iter_p_gen_Sn. -assumption. -qed. - -theorem false_to_pi_p_Sn: -\forall n:nat. \forall p:nat \to bool. \forall g:nat \to nat. -p n = false \to pi_p (S n) p g = pi_p n p g. -intros. -unfold pi_p. -apply false_to_iter_p_gen_Sn. -assumption. -qed. - -theorem eq_pi_p: \forall p1,p2:nat \to bool. -\forall g1,g2: nat \to nat.\forall n. -(\forall x. x < n \to p1 x = p2 x) \to -(\forall x. x < n \to g1 x = g2 x) \to -pi_p n p1 g1 = pi_p n p2 g2. -intros. -unfold pi_p. -apply eq_iter_p_gen; -assumption. -qed. - -theorem eq_pi_p1: \forall p1,p2:nat \to bool. -\forall g1,g2: nat \to nat.\forall n. -(\forall x. x < n \to p1 x = p2 x) \to -(\forall x. x < n \to p1 x = true \to g1 x = g2 x) \to -pi_p n p1 g1 = pi_p n p2 g2. -intros. -unfold pi_p. -apply eq_iter_p_gen1; -assumption. -qed. - -theorem pi_p_false: -\forall g: nat \to nat.\forall n.pi_p n (\lambda x.false) g = S O. -intros. -unfold pi_p. -apply iter_p_gen_false. -qed. - -theorem pi_p_times: \forall n,k:nat.\forall p:nat \to bool. -\forall g: nat \to nat. -pi_p (k+n) p g -= pi_p k (\lambda x.p (x+n)) (\lambda x.g (x+n)) * pi_p n p g. -intros. -unfold pi_p. -apply (iter_p_gen_plusA nat n k p g (S O) times) -[ apply sym_times. -| intros. - apply sym_eq. - apply times_n_SO -| apply associative_times -] -qed. - -theorem false_to_eq_pi_p: \forall n,m:nat.n \le m \to -\forall p:nat \to bool. -\forall g: nat \to nat. (\forall i:nat. n \le i \to i < m \to -p i = false) \to pi_p m p g = pi_p n p g. -intros. -unfold pi_p. -apply (false_to_eq_iter_p_gen); -assumption. -qed. - -theorem or_false_eq_SO_to_eq_pi_p: -\forall n,m:nat.\forall p:nat \to bool. -\forall g: nat \to nat. -n \le m \to (\forall i:nat. n \le i \to i < m \to p i = false \lor g i = S O) -\to pi_p m p g = pi_p n p g. -intros. -unfold pi_p. -apply or_false_eq_baseA_to_eq_iter_p_gen - [intros.simplify.rewrite < plus_n_O.reflexivity - |assumption - |assumption - ] -qed. - -theorem pi_p2 : -\forall n,m:nat. -\forall p1,p2:nat \to bool. -\forall g: nat \to nat \to nat. -pi_p (n*m) - (\lambda x.andb (p1 (div x m)) (p2 (mod x m))) - (\lambda x.g (div x m) (mod x m)) = -pi_p n p1 - (\lambda x.pi_p m p2 (g x)). -intros. -unfold pi_p. -apply (iter_p_gen2 n m p1 p2 nat g (S O) times) -[ apply sym_times -| apply associative_times -| intros. - apply sym_eq. - apply times_n_SO -] -qed. - -theorem pi_p2' : -\forall n,m:nat. -\forall p1:nat \to bool. -\forall p2:nat \to nat \to bool. -\forall g: nat \to nat \to nat. -pi_p (n*m) - (\lambda x.andb (p1 (div x m)) (p2 (div x m) (mod x m))) - (\lambda x.g (div x m) (mod x m)) = -pi_p n p1 - (\lambda x.pi_p m (p2 x) (g x)). -intros. -unfold pi_p. -apply (iter_p_gen2' n m p1 p2 nat g (S O) times) -[ apply sym_times -| apply associative_times -| intros. - apply sym_eq. - apply times_n_SO -] -qed. - -lemma pi_p_gi: \forall g: nat \to nat. -\forall n,i.\forall p:nat \to bool.i < n \to p i = true \to -pi_p n p g = g i * pi_p n (\lambda x. andb (p x) (notb (eqb x i))) g. -intros. -unfold pi_p. -apply (iter_p_gen_gi) -[ apply sym_times -| apply associative_times -| intros. - apply sym_eq. - apply times_n_SO -| assumption -| assumption -] -qed. - -theorem eq_pi_p_gh: -\forall g,h,h1: nat \to nat.\forall n,n1. -\forall p1,p2:nat \to bool. -(\forall i. i < n \to p1 i = true \to p2 (h i) = true) \to -(\forall i. i < n \to p1 i = true \to h1 (h i) = i) \to -(\forall i. i < n \to p1 i = true \to h i < n1) \to -(\forall j. j < n1 \to p2 j = true \to p1 (h1 j) = true) \to -(\forall j. j < n1 \to p2 j = true \to h (h1 j) = j) \to -(\forall j. j < n1 \to p2 j = true \to h1 j < n) \to -pi_p n p1 (\lambda x.g(h x)) = pi_p n1 p2 g. -intros. -unfold pi_p. -apply (eq_iter_p_gen_gh nat (S O) times ? ? ? g h h1 n n1 p1 p2) -[ apply sym_times -| apply associative_times -| intros. - apply sym_eq. - apply times_n_SO -| assumption -| assumption -| assumption -| assumption -| assumption -| assumption -] -qed. - -theorem exp_sigma_p: \forall n,a,p. -pi_p n p (\lambda x.a) = (exp a (sigma_p n p (\lambda x.S O))). -intros. -elim n - [reflexivity - |apply (bool_elim ? (p n1)) - [intro. - rewrite > true_to_pi_p_Sn - [rewrite > true_to_sigma_p_Sn - [simplify. - rewrite > H. - reflexivity. - |assumption - ] - |assumption - ] - |intro. - rewrite > false_to_pi_p_Sn - [rewrite > false_to_sigma_p_Sn - [simplify.assumption - |assumption - ] - |assumption - ] - ] - ] -qed. - -theorem exp_sigma_p1: \forall n,a,p,f. -pi_p n p (\lambda x.(exp a (f x))) = (exp a (sigma_p n p f)). -intros. -elim n - [reflexivity - |apply (bool_elim ? (p n1)) - [intro. - rewrite > true_to_pi_p_Sn - [rewrite > true_to_sigma_p_Sn - [simplify. - rewrite > H. - rewrite > exp_plus_times. - reflexivity. - |assumption - ] - |assumption - ] - |intro. - rewrite > false_to_pi_p_Sn - [rewrite > false_to_sigma_p_Sn - [simplify.assumption - |assumption - ] - |assumption - ] - ] - ] -qed. - -theorem times_pi_p: \forall n,p,f,g. -pi_p n p (\lambda x.f x*g x) = pi_p n p f * pi_p n p g. -intros. -elim n - [simplify.reflexivity - |apply (bool_elim ? (p n1)) - [intro. - rewrite > true_to_pi_p_Sn - [rewrite > true_to_pi_p_Sn - [rewrite > true_to_pi_p_Sn - [rewrite > H.autobatch - |assumption - ] - |assumption - ] - |assumption - ] - |intro. - rewrite > false_to_pi_p_Sn - [rewrite > false_to_pi_p_Sn - [rewrite > false_to_pi_p_Sn;assumption - |assumption - ] - |assumption - ] - ] - ] -qed. - - -theorem exp_times_pi_p: \forall n,m,k,p,f. -pi_p n p (\lambda x.exp k (m*(f x))) = -exp (pi_p n p (\lambda x.exp k (f x))) m. -intros. -apply (trans_eq ? ? (pi_p n p (\lambda x.(exp (exp k (f x)) m)))) - [apply eq_pi_p;intros - [reflexivity - |apply sym_eq.rewrite > sym_times. - apply exp_exp_times - ] - |apply exp_pi_p - ] -qed. - - -theorem pi_p_knm: -\forall g: nat \to nat. -\forall h2:nat \to nat \to nat. -\forall h11,h12:nat \to nat. -\forall k,n,m. -\forall p1,p21:nat \to bool. -\forall p22:nat \to nat \to bool. -(\forall x. x < k \to p1 x = true \to -p21 (h11 x) = true ∧ p22 (h11 x) (h12 x) = true -\land h2 (h11 x) (h12 x) = x -\land (h11 x) < n \land (h12 x) < m) \to -(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to -p1 (h2 i j) = true \land -h11 (h2 i j) = i \land h12 (h2 i j) = j -\land h2 i j < k) → -(* -Pi z < k | p1 z. g z = -Pi x < n | p21 x. Pi y < m | p22 x y.g (h2 x y). -*) -pi_p k p1 g = -pi_p n p21 (\lambda x:nat.pi_p m (p22 x) (\lambda y. g (h2 x y))). -intros. -unfold pi_p.unfold pi_p. -apply (iter_p_gen_knm nat (S O) times sym_times assoc_times ? ? ? h11 h12) - [intros.apply sym_eq.apply times_n_SO. - |assumption - |assumption - ] -qed. - -theorem pi_p_pi_p: -\forall g: nat \to nat \to nat. -\forall h11,h12,h21,h22: nat \to nat \to nat. -\forall n1,m1,n2,m2. -\forall p11,p21:nat \to bool. -\forall p12,p22:nat \to nat \to bool. -(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to -p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true -\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j -\land h11 i j < n1 \land h12 i j < m1) \to -(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to -p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true -\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j -\land (h21 i j) < n2 \land (h22 i j) < m2) \to -pi_p n1 p11 - (\lambda x:nat .pi_p m1 (p12 x) (\lambda y. g x y)) = -pi_p n2 p21 - (\lambda x:nat .pi_p m2 (p22 x) (\lambda y. g (h11 x y) (h12 x y))). -intros. -unfold pi_p.unfold pi_p. -apply (iter_p_gen_2_eq ? ? ? sym_times assoc_times ? ? ? ? h21 h22) - [intros.apply sym_eq.apply times_n_SO. - |assumption - |assumption - ] -qed. - -theorem pi_p_pi_p1: -\forall g: nat \to nat \to nat. -\forall n,m. -\forall p11,p21:nat \to bool. -\forall p12,p22:nat \to nat \to bool. -(\forall x,y. x < n \to y < m \to - (p11 x \land p12 x y) = (p21 y \land p22 y x)) \to -pi_p n p11 (\lambda x:nat.pi_p m (p12 x) (\lambda y. g x y)) = -pi_p m p21 (\lambda y:nat.pi_p n (p22 y) (\lambda x. g x y)). -intros. -unfold pi_p.unfold pi_p. -apply (iter_p_gen_iter_p_gen ? ? ? sym_times assoc_times) - [intros.apply sym_eq.apply times_n_SO. - |assumption - ] -qed. *) \ No newline at end of file diff --git a/matita/matita/lib/arithmetics/bigops.ma b/matita/matita/lib/arithmetics/bigops.ma index 88b7fdb7a..50bf2443a 100644 --- a/matita/matita/lib/arithmetics/bigops.ma +++ b/matita/matita/lib/arithmetics/bigops.ma @@ -399,710 +399,3 @@ theorem bigop_distr: ∀n,p,B,nil.∀R:Dop B nil.∀f,a. |>bigop_Sfalse // >bigop_Sfalse // ] qed. - -(* Sigma e Pi *) - -notation "∑_{ ident i < n | p } f" - with precedence 80 -for @{'bigop $n plus 0 (λ${ident i}. $p) (λ${ident i}. $f)}. - -notation "∑_{ ident i < n } f" - with precedence 80 -for @{'bigop $n plus 0 (λ${ident i}.true) (λ${ident i}. $f)}. - -notation "∑_{ ident j ∈ [a,b[ } f" - with precedence 80 -for @{'bigop ($b-$a) plus 0 (λ${ident j}.((λ${ident j}.true) (${ident j}+$a))) - (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. - -notation "∑_{ ident j ∈ [a,b[ | p } f" - with precedence 80 -for @{'bigop ($b-$a) plus 0 (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a))) - (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. - -notation "∏_{ ident i < n | p} f" - with precedence 80 -for @{'bigop $n times 1 (λ${ident i}.$p) (λ${ident i}. $f)}. - -notation "∏_{ ident i < n } f" - with precedence 80 -for @{'bigop $n times 1 (λ${ident i}.true) (λ${ident i}. $f)}. - -notation "∏_{ ident j ∈ [a,b[ } f" - with precedence 80 -for @{'bigop ($b-$a) times 1 (λ${ident j}.((λ${ident j}.true) (${ident j}+$a))) - (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. - -notation "∏_{ ident j ∈ [a,b[ | p } f" - with precedence 80 -for @{'bigop ($b-$a) times 1 (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a))) - (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. - - -(* - -definition p_ord_times \def -\lambda p,m,x. - match p_ord x p with - [pair q r \Rightarrow r*m+q]. - -theorem eq_p_ord_times: \forall p,m,x. -p_ord_times p m x = (ord_rem x p)*m+(ord x p). -intros.unfold p_ord_times. unfold ord_rem. -unfold ord. -elim (p_ord x p). -reflexivity. -qed. - -theorem div_p_ord_times: -\forall p,m,x. ord x p < m \to p_ord_times p m x / m = ord_rem x p. -intros.rewrite > eq_p_ord_times. -apply div_plus_times. -assumption. -qed. - -theorem mod_p_ord_times: -\forall p,m,x. ord x p < m \to p_ord_times p m x \mod m = ord x p. -intros.rewrite > eq_p_ord_times. -apply mod_plus_times. -assumption. -qed. - -lemma lt_times_to_lt_O: \forall i,n,m:nat. i < n*m \to O < m. -intros. -elim (le_to_or_lt_eq O ? (le_O_n m)) - [assumption - |apply False_ind. - rewrite < H1 in H. - rewrite < times_n_O in H. - apply (not_le_Sn_O ? H) - ] -qed. - -theorem iter_p_gen_knm: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to A. -\forall h2:nat \to nat \to nat. -\forall h11,h12:nat \to nat. -\forall k,n,m. -\forall p1,p21:nat \to bool. -\forall p22:nat \to nat \to bool. -(\forall x. x < k \to p1 x = true \to -p21 (h11 x) = true \land p22 (h11 x) (h12 x) = true -\land h2 (h11 x) (h12 x) = x -\land (h11 x) < n \land (h12 x) < m) \to -(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to -p1 (h2 i j) = true \land -h11 (h2 i j) = i \land h12 (h2 i j) = j -\land h2 i j < k) \to -iter_p_gen k p1 A g baseA plusA = -iter_p_gen n p21 A (\lambda x:nat.iter_p_gen m (p22 x) A (\lambda y. g (h2 x y)) baseA plusA) baseA plusA. -intros. -rewrite < (iter_p_gen2' n m p21 p22 ? ? ? ? H H1 H2). -apply sym_eq. -apply (eq_iter_p_gen_gh A baseA plusA H H1 H2 g ? (\lambda x.(h11 x)*m+(h12 x))) - [intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - assumption - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - rewrite > H10. - rewrite > H9. - apply sym_eq. - apply div_mod. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - assumption - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - rewrite > div_plus_times - [rewrite > mod_plus_times - [rewrite > H9. - rewrite > H12. - reflexivity. - |assumption - ] - |assumption - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - rewrite > div_plus_times - [rewrite > mod_plus_times - [assumption - |assumption - ] - |assumption - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - apply (lt_to_le_to_lt ? ((h11 j)*m+m)) - [apply monotonic_lt_plus_r. - assumption - |rewrite > sym_plus. - change with ((S (h11 j)*m) \le n*m). - apply monotonic_le_times_l. - assumption - ] - ] -qed. - -theorem iter_p_gen_divides: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -\forall n,m,p:nat.O < n \to prime p \to Not (divides p n) \to -\forall g: nat \to A. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) - -\to - -iter_p_gen (S (n*(exp p m))) (\lambda x.divides_b x (n*(exp p m))) A g baseA plusA = -iter_p_gen (S n) (\lambda x.divides_b x n) A - (\lambda x.iter_p_gen (S m) (\lambda y.true) A (\lambda y.g (x*(exp p y))) baseA plusA) baseA plusA. -intros. -cut (O < p) - [rewrite < (iter_p_gen2 ? ? ? ? ? ? ? ? H3 H4 H5). - apply (trans_eq ? ? - (iter_p_gen (S n*S m) (\lambda x:nat.divides_b (x/S m) n) A - (\lambda x:nat.g (x/S m*(p)\sup(x\mod S m))) baseA plusA) ) - [apply sym_eq. - apply (eq_iter_p_gen_gh ? ? ? ? ? ? g ? (p_ord_times p (S m))) - [ assumption - | assumption - | assumption - |intros. - lapply (divides_b_true_to_lt_O ? ? H H7). - apply divides_to_divides_b_true - [rewrite > (times_n_O O). - apply lt_times - [assumption - |apply lt_O_exp.assumption - ] - |apply divides_times - [apply divides_b_true_to_divides.assumption - |apply (witness ? ? (p \sup (m-i \mod (S m)))). - rewrite < exp_plus_times. - apply eq_f. - rewrite > sym_plus. - apply plus_minus_m_m. - autobatch by le_S_S_to_le, lt_mod_m_m, lt_O_S; - ] - ] - |intros. - lapply (divides_b_true_to_lt_O ? ? H H7). - unfold p_ord_times. - rewrite > (p_ord_exp1 p ? (i \mod (S m)) (i/S m)) - [change with ((i/S m)*S m+i \mod S m=i). - apply sym_eq. - apply div_mod. - apply lt_O_S - |assumption - |unfold Not.intro. - apply H2. - apply (trans_divides ? (i/ S m)) - [assumption| - apply divides_b_true_to_divides;assumption] - |apply sym_times. - ] - |intros. - apply le_S_S. - apply le_times - [apply le_S_S_to_le. - change with ((i/S m) < S n). - apply (lt_times_to_lt_l m). - apply (le_to_lt_to_lt ? i);[2:assumption] - autobatch by eq_plus_to_le, div_mod, lt_O_S. - |apply le_exp - [assumption - |apply le_S_S_to_le. - apply lt_mod_m_m. - apply lt_O_S - ] - ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_times - [apply divides_to_divides_b_true - [apply lt_O_ord_rem - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |cut (n = ord_rem (n*(exp p m)) p) - [rewrite > Hcut2. - apply divides_to_divides_ord_rem - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord_rem. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |assumption - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_times - [rewrite > mod_p_ord_times - [rewrite > sym_times. - apply sym_eq. - apply exp_ord - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut2. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |assumption - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |intros. - rewrite > eq_p_ord_times. - rewrite > sym_plus. - apply (lt_to_le_to_lt ? (S m +ord_rem j p*S m)) - [apply lt_plus_l. - apply le_S_S. - cut (m = ord (n*(p \sup m)) p) - [rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > sym_times. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |reflexivity - ] - ] - |change with (S (ord_rem j p)*S m \le S n*S m). - apply le_times_l. - apply le_S_S. - cut (n = ord_rem (n*(p \sup m)) p) - [rewrite > Hcut1. - apply divides_to_le - [apply lt_O_ord_rem - [elim H1.assumption - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |apply divides_to_divides_ord_rem - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - ] - |unfold ord_rem. - rewrite > sym_times. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |reflexivity - ] - ] - ] - ] - |apply eq_iter_p_gen - - [intros. - elim (divides_b (x/S m) n);reflexivity - |intros.reflexivity - ] - ] -|elim H1.apply lt_to_le.assumption -] -qed. - - - -theorem iter_p_gen_2_eq: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to nat \to A. -\forall h11,h12,h21,h22: nat \to nat \to nat. -\forall n1,m1,n2,m2. -\forall p11,p21:nat \to bool. -\forall p12,p22:nat \to nat \to bool. -(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to -p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true -\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j -\land h11 i j < n1 \land h12 i j < m1) \to -(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to -p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true -\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j -\land (h21 i j) < n2 \land (h22 i j) < m2) \to -iter_p_gen n1 p11 A - (\lambda x:nat .iter_p_gen m1 (p12 x) A (\lambda y. g x y) baseA plusA) - baseA plusA = -iter_p_gen n2 p21 A - (\lambda x:nat .iter_p_gen m2 (p22 x) A (\lambda y. g (h11 x y) (h12 x y)) baseA plusA ) - baseA plusA. - -intros. -rewrite < (iter_p_gen2' ? ? ? ? ? ? ? ? H H1 H2). -letin ha:= (\lambda x,y.(((h11 x y)*m1) + (h12 x y))). -letin ha12:= (\lambda x.(h21 (x/m1) (x \mod m1))). -letin ha22:= (\lambda x.(h22 (x/m1) (x \mod m1))). - -apply (trans_eq ? ? -(iter_p_gen n2 p21 A (\lambda x:nat. iter_p_gen m2 (p22 x) A - (\lambda y:nat.(g (((h11 x y)*m1+(h12 x y))/m1) (((h11 x y)*m1+(h12 x y))\mod m1))) baseA plusA ) baseA plusA)) -[ - apply (iter_p_gen_knm A baseA plusA H H1 H2 (\lambda e. (g (e/m1) (e \mod m1))) ha ha12 ha22);intros - [ elim (and_true ? ? H6). - cut(O \lt m1) - [ cut(x/m1 < n1) - [ cut((x \mod m1) < m1) - [ elim (H4 ? ? Hcut1 Hcut2 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - split - [ split - [ split - [ split - [ assumption - | assumption - ] - | unfold ha. - unfold ha12. - unfold ha22. - rewrite > H14. - rewrite > H13. - apply sym_eq. - apply div_mod. - assumption - ] - | assumption - ] - | assumption - ] - | apply lt_mod_m_m. - assumption - ] - | apply (lt_times_n_to_lt m1) - [ assumption - | apply (le_to_lt_to_lt ? x) - [ apply (eq_plus_to_le ? ? (x \mod m1)). - apply div_mod. - assumption - | assumption - ] - ] - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H5. - apply (le_n_O_elim ? H9). - rewrite < times_n_O. - apply le_to_not_lt. - apply le_O_n. - ] - | elim (H3 ? ? H5 H6 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - cut(((h11 i j)*m1 + (h12 i j))/m1 = (h11 i j)) - [ cut(((h11 i j)*m1 + (h12 i j)) \mod m1 = (h12 i j)) - [ split - [ split - [ split - [ apply true_to_true_to_andb_true - [ rewrite > Hcut. - assumption - | rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | unfold ha. - unfold ha12. - rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | unfold ha. - unfold ha22. - rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | cut(O \lt m1) - [ cut(O \lt n1) - [ apply (lt_to_le_to_lt ? ((h11 i j)*m1 + m1) ) - [ unfold ha. - apply (lt_plus_r). - assumption - | rewrite > sym_plus. - rewrite > (sym_times (h11 i j) m1). - rewrite > times_n_Sm. - rewrite > sym_times. - apply (le_times_l). - assumption - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H12. - apply (le_n_O_elim ? H11). - apply le_to_not_lt. - apply le_O_n - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H10. - apply (le_n_O_elim ? H11). - apply le_to_not_lt. - apply le_O_n - ] - ] - | rewrite > (mod_plus_times m1 (h11 i j) (h12 i j)). - reflexivity. - assumption - ] - | rewrite > (div_plus_times m1 (h11 i j) (h12 i j)). - reflexivity. - assumption - ] - ] -| apply (eq_iter_p_gen1) - [ intros. reflexivity - | intros. - apply (eq_iter_p_gen1) - [ intros. reflexivity - | intros. - rewrite > (div_plus_times) - [ rewrite > (mod_plus_times) - [ reflexivity - | elim (H3 x x1 H5 H7 H6 H8). - assumption - ] - | elim (H3 x x1 H5 H7 H6 H8). - assumption - ] - ] - ] -] -qed. - -theorem iter_p_gen_iter_p_gen: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to nat \to A. -\forall n,m. -\forall p11,p21:nat \to bool. -\forall p12,p22:nat \to nat \to bool. -(\forall x,y. x < n \to y < m \to - (p11 x \land p12 x y) = (p21 y \land p22 y x)) \to -iter_p_gen n p11 A - (\lambda x:nat.iter_p_gen m (p12 x) A (\lambda y. g x y) baseA plusA) - baseA plusA = -iter_p_gen m p21 A - (\lambda y:nat.iter_p_gen n (p22 y) A (\lambda x. g x y) baseA plusA ) - baseA plusA. -intros. -apply (iter_p_gen_2_eq A baseA plusA H H1 H2 (\lambda x,y. g x y) (\lambda x,y.y) (\lambda x,y.x) (\lambda x,y.y) (\lambda x,y.x) - n m m n p11 p21 p12 p22) - [intros.split - [split - [split - [split - [split - [apply (andb_true_true ? (p12 j i)). - rewrite > H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - |apply (andb_true_true_r (p11 j)). - rewrite > H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - ] - |reflexivity - ] - |reflexivity - ] - |assumption - ] - |assumption - ] - |intros.split - [split - [split - [split - [split - [apply (andb_true_true ? (p22 j i)). - rewrite < H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - |apply (andb_true_true_r (p21 j)). - rewrite < H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - ] - |reflexivity - ] - |reflexivity - ] - |assumption - ] - |assumption - ] - ] -qed. *) \ No newline at end of file diff --git a/matita/matita/lib/arithmetics/binomial.ma b/matita/matita/lib/arithmetics/binomial.ma index a8b1cef79..8c5326875 100644 --- a/matita/matita/lib/arithmetics/binomial.ma +++ b/matita/matita/lib/arithmetics/binomial.ma @@ -9,8 +9,8 @@ \ / V_______________________________________________________________ *) -include "arithmetics/sigma_pi.ma". include "arithmetics/primes.ma". +include "arithmetics/bigops.ma". (* binomial coefficient *) definition bc ≝ λn,k. n!/(k!*(n-k)!). @@ -23,7 +23,7 @@ theorem bc_n_n: ∀n. bc n n = 1. qed. theorem bc_n_O: ∀n. bc n O = 1. -#n >bceq bceq (div_times_times ?? (n - k)) in ⊢ (???(??%)) ; [|>(times_n_O 0) @lt_times // - |@(le_plus_to_le_r k ??) associative_times in ⊢ (???(??(??%))); >fact_minus // commutative_plus in ⊢ (???%); commutative_plus in ⊢ (???%); associative_times >(commutative_times (S k)) - (times_n_O 0) @lt_times [@(le_1_fact (S k)) | //] ] qed. @@ -89,13 +89,12 @@ theorem lt_O_bc: ∀n,m. m ≤ n → O < bc n m. ] qed. -(* theorem binomial_law:∀a,b,n. - (a+b)^n = Σ_{k < S n}((bc n k)*(a^(n-k))*(b^k)). + (a+b)^n = ∑_{k < S n}((bc n k)*(a^(n-k))*(b^k)). #a #b #n (elim n) // --n #n #Hind normalize in ⊢ (? ? % ?). +-n #n #Hind normalize in ⊢ (??%?); >commutative_times >bigop_Strue // >Hind >distributive_times_plus -<(minus_n_n (S n)) (bigop_distr ???? natDop ? a) >(bigop_distr ???? natDop ? b) >bigop_Strue in ⊢ (??(??%)?) // H >binomial_law @same_bigop // qed. +definition M ≝ λm.bc (S(2*m)) m. + +theorem lt_M: ∀m. O < m → M m < exp 2 (2*m). +#m #posm @(lt_times_n_to_lt_l 2) + |change in ⊢ (? ? %) with (exp 2 (S(2*m))). + change in ⊢ (? ? (? % ?)) with (1+1). + rewrite > exp_plus_sigma_p. + apply (le_to_lt_to_lt ? (sigma_p (S (S (2*m))) (λk:nat.orb (eqb k m) (eqb k (S m))) + (λk:nat.bc (S (2*m)) k*(1)\sup(S (2*m)-k)*(1)\sup(k)))) + [rewrite > (sigma_p_gi ? ? m) + [rewrite > (sigma_p_gi ? ? (S m)) + [rewrite > (false_to_eq_sigma_p O (S(S(2*m)))) + [simplify in ⊢ (? ? (? ? (? ? %))). + simplify in ⊢ (? % ?). + rewrite < exp_SO_n.rewrite < exp_SO_n. + rewrite < exp_SO_n.rewrite < exp_SO_n. + rewrite < times_n_SO.rewrite < times_n_SO. + rewrite < times_n_SO.rewrite < times_n_SO. + apply le_plus + [unfold M.apply le_n + |apply le_plus_l.unfold M. + change in \vdash (? ? %) with (fact (S(2*m))/(fact (S m)*(fact ((2*m)-m)))). + simplify in \vdash (? ? (? ? (? ? (? (? % ?))))). + rewrite < plus_n_O.rewrite < minus_plus_m_m. + rewrite < sym_times in \vdash (? ? (? ? %)). + change in \vdash (? % ?) with (fact (S(2*m))/(fact m*(fact (S(2*m)-m)))). + simplify in \vdash (? (? ? (? ? (? (? (? %) ?)))) ?). + rewrite < plus_n_O.change in \vdash (? (? ? (? ? (? (? % ?)))) ?) with (S m + m). + rewrite < minus_plus_m_m. + apply le_n + ] + |apply le_O_n + |intros. + elim (eqb i m);elim (eqb i (S m));reflexivity + ] + |apply le_S_S.apply le_S_S. + apply le_times_n. + apply le_n_Sn + |rewrite > (eq_to_eqb_true ? ? (refl_eq ? (S m))). + rewrite > (not_eq_to_eqb_false (S m) m) + [reflexivity + |intro.apply (not_eq_n_Sn m). + apply sym_eq.assumption + ] + ] + |apply le_S.apply le_S_S. + apply le_times_n. + apply le_n_Sn + |rewrite > (eq_to_eqb_true ? ? (refl_eq ? (S m))). + reflexivity + ] + |rewrite > (bool_to_nat_to_eq_sigma_p (S(S(2*m))) ? (\lambda k.true) ? + (\lambda k.bool_to_nat (eqb k m\lor eqb k (S m))*(bc (S (2*m)) k*(1)\sup(S (2*m)-k)*(1)\sup(k)))) + in \vdash (? % ?) + [apply lt_sigma_p + [intros.elim (eqb i m\lor eqb i (S m)) + [rewrite > sym_times.rewrite < times_n_SO.apply le_n + |apply le_O_n + ] + |apply (ex_intro ? ? O). + split + [split[apply lt_O_S|reflexivity] + |rewrite > (not_eq_to_eqb_false ? ? (not_eq_O_S m)). + rewrite > (not_eq_to_eqb_false ? ? (lt_to_not_eq ? ? H)). + simplify in \vdash (? % ?). + rewrite < exp_SO_n.rewrite < exp_SO_n. + rewrite > bc_n_O.simplify. + apply le_n + ] + ] + |intros.rewrite > sym_times in \vdash (? ? ? %). + rewrite < times_n_SO. + reflexivity + ] + ] + ] +qed. + (* theorem exp_Sn_SSO: \forall n. exp (S n) 2 = S((exp n 2) + 2*n). diff --git a/matita/matita/lib/arithmetics/sigma_pi.ma b/matita/matita/lib/arithmetics/sigma_pi.ma index 94b3794b3..3dc9cb31d 100644 --- a/matita/matita/lib/arithmetics/sigma_pi.ma +++ b/matita/matita/lib/arithmetics/sigma_pi.ma @@ -9,42 +9,14 @@ \ / V_______________________________________________________________ *) -(* To be ported +include "arithmetics/primes.ma". include "arithmetics/bigops.ma". -definition natAop ≝ mk_Aop nat 0 plus (λa.refl ? a) (λn.sym_eq ??? (plus_n_O n)) - (λa,b,c.sym_eq ??? (associative_plus a b c)). - -definition natACop ≝ mk_ACop nat 0 natAop commutative_plus. - -definition natDop ≝ mk_Dop nat 0 natACop times (λn.(sym_eq ??? (times_n_O n))) - distributive_times_plus. - -unification hint 0 ≔ ; - S ≟ natAop -(* ---------------------------------------- *) ⊢ - plus ≡ op ? ? S. - -unification hint 0 ≔ ; - S ≟ natACop -(* ---------------------------------------- *) ⊢ - plus ≡ op ? ? S. - -unification hint 0 ≔ ; - S ≟ natDop -(* ---------------------------------------- *) ⊢ - plus ≡ sum ? ? S. - -unification hint 0 ≔ ; - S ≟ natDop -(* ---------------------------------------- *) ⊢ - times ≡ prod ? ? S. - (* Sigma e Pi *) notation "∑_{ ident i < n | p } f" with precedence 80 -for @{'bigop $n plus 0 (λ${ident i}.$p) (λ${ident i}. $f)}. +for @{'bigop $n plus 0 (λ${ident i}. $p) (λ${ident i}. $f)}. notation "∑_{ ident i < n } f" with precedence 80 @@ -78,671 +50,70 @@ notation "∏_{ ident j ∈ [a,b[ | p } f" for @{'bigop ($b-$a) times 1 (λ${ident j}.((λ${ident j}.$p) (${ident j}+$a))) (λ${ident j}.((λ${ident j}.$f)(${ident j}+$a)))}. - -(* - -definition p_ord_times \def -\lambda p,m,x. - match p_ord x p with - [pair q r \Rightarrow r*m+q]. - -theorem eq_p_ord_times: \forall p,m,x. -p_ord_times p m x = (ord_rem x p)*m+(ord x p). -intros.unfold p_ord_times. unfold ord_rem. -unfold ord. -elim (p_ord x p). -reflexivity. -qed. +(* instances of associative and commutative operations *) -theorem div_p_ord_times: -\forall p,m,x. ord x p < m \to p_ord_times p m x / m = ord_rem x p. -intros.rewrite > eq_p_ord_times. -apply div_plus_times. -assumption. -qed. +definition plusA ≝ mk_Aop nat 0 plus (λa.refl ? a) (λn.sym_eq ??? (plus_n_O n)) + (λa,b,c.sym_eq ??? (associative_plus a b c)). + +definition plusAC ≝ mk_ACop nat 0 plusA commutative_plus. -theorem mod_p_ord_times: -\forall p,m,x. ord x p < m \to p_ord_times p m x \mod m = ord x p. -intros.rewrite > eq_p_ord_times. -apply mod_plus_times. -assumption. -qed. +definition timesA ≝ mk_Aop nat 1 times + (λa.sym_eq ??? (plus_n_O a)) (λn.sym_eq ??? (times_n_1 n)) + (λa,b,c.sym_eq ??? (associative_times a b c)). + +definition timesAC ≝ mk_ACop nat 1 timesA commutative_times. -lemma lt_times_to_lt_O: \forall i,n,m:nat. i < n*m \to O < m. -intros. -elim (le_to_or_lt_eq O ? (le_O_n m)) - [assumption - |apply False_ind. - rewrite < H1 in H. - rewrite < times_n_O in H. - apply (not_le_Sn_O ? H) - ] -qed. +definition natD ≝ mk_Dop nat 0 plusAC times (λn.(sym_eq ??? (times_n_O n))) + distributive_times_plus. + +(********************************************************) -theorem iter_p_gen_knm: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to A. -\forall h2:nat \to nat \to nat. -\forall h11,h12:nat \to nat. -\forall k,n,m. -\forall p1,p21:nat \to bool. -\forall p22:nat \to nat \to bool. -(\forall x. x < k \to p1 x = true \to -p21 (h11 x) = true \land p22 (h11 x) (h12 x) = true -\land h2 (h11 x) (h12 x) = x -\land (h11 x) < n \land (h12 x) < m) \to -(\forall i,j. i < n \to j < m \to p21 i = true \to p22 i j = true \to -p1 (h2 i j) = true \land -h11 (h2 i j) = i \land h12 (h2 i j) = j -\land h2 i j < k) \to -iter_p_gen k p1 A g baseA plusA = -iter_p_gen n p21 A (\lambda x:nat.iter_p_gen m (p22 x) A (\lambda y. g (h2 x y)) baseA plusA) baseA plusA. -intros. -rewrite < (iter_p_gen2' n m p21 p22 ? ? ? ? H H1 H2). -apply sym_eq. -apply (eq_iter_p_gen_gh A baseA plusA H H1 H2 g ? (\lambda x.(h11 x)*m+(h12 x))) - [intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - assumption - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - rewrite > H10. - rewrite > H9. - apply sym_eq. - apply div_mod. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H4 (i/m) (i \mod m));clear H4 - [elim H7.clear H7. - elim H4.clear H4. - assumption - |apply (lt_times_to_lt_div ? ? ? H5) - |apply lt_mod_m_m. - apply (lt_times_to_lt_O ? ? ? H5) - |apply (andb_true_true ? ? H6) - |apply (andb_true_true_r ? ? H6) - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - rewrite > div_plus_times - [rewrite > mod_plus_times - [rewrite > H9. - rewrite > H12. - reflexivity. - |assumption - ] - |assumption - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - rewrite > div_plus_times - [rewrite > mod_plus_times - [assumption - |assumption - ] - |assumption - ] - |intros. - elim (H3 j H5 H6). - elim H7.clear H7. - elim H9.clear H9. - elim H7.clear H7. - apply (lt_to_le_to_lt ? ((h11 j)*m+m)) - [apply monotonic_lt_plus_r. - assumption - |rewrite > sym_plus. - change with ((S (h11 j)*m) \le n*m). - apply monotonic_le_times_l. - assumption - ] - ] +theorem sigma_const: ∀n:nat. ∑_{ibigop_Strue // qed. -theorem iter_p_gen_divides: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -\forall n,m,p:nat.O < n \to prime p \to Not (divides p n) \to -\forall g: nat \to A. -(symmetric A plusA) \to (associative A plusA) \to (\forall a:A.(plusA a baseA) = a) - -\to - -iter_p_gen (S (n*(exp p m))) (\lambda x.divides_b x (n*(exp p m))) A g baseA plusA = -iter_p_gen (S n) (\lambda x.divides_b x n) A - (\lambda x.iter_p_gen (S m) (\lambda y.true) A (\lambda y.g (x*(exp p y))) baseA plusA) baseA plusA. -intros. -cut (O < p) - [rewrite < (iter_p_gen2 ? ? ? ? ? ? ? ? H3 H4 H5). - apply (trans_eq ? ? - (iter_p_gen (S n*S m) (\lambda x:nat.divides_b (x/S m) n) A - (\lambda x:nat.g (x/S m*(p)\sup(x\mod S m))) baseA plusA) ) - [apply sym_eq. - apply (eq_iter_p_gen_gh ? ? ? ? ? ? g ? (p_ord_times p (S m))) - [ assumption - | assumption - | assumption - |intros. - lapply (divides_b_true_to_lt_O ? ? H H7). - apply divides_to_divides_b_true - [rewrite > (times_n_O O). - apply lt_times - [assumption - |apply lt_O_exp.assumption - ] - |apply divides_times - [apply divides_b_true_to_divides.assumption - |apply (witness ? ? (p \sup (m-i \mod (S m)))). - rewrite < exp_plus_times. - apply eq_f. - rewrite > sym_plus. - apply plus_minus_m_m. - autobatch by le_S_S_to_le, lt_mod_m_m, lt_O_S; - ] - ] - |intros. - lapply (divides_b_true_to_lt_O ? ? H H7). - unfold p_ord_times. - rewrite > (p_ord_exp1 p ? (i \mod (S m)) (i/S m)) - [change with ((i/S m)*S m+i \mod S m=i). - apply sym_eq. - apply div_mod. - apply lt_O_S - |assumption - |unfold Not.intro. - apply H2. - apply (trans_divides ? (i/ S m)) - [assumption| - apply divides_b_true_to_divides;assumption] - |apply sym_times. - ] - |intros. - apply le_S_S. - apply le_times - [apply le_S_S_to_le. - change with ((i/S m) < S n). - apply (lt_times_to_lt_l m). - apply (le_to_lt_to_lt ? i);[2:assumption] - autobatch by eq_plus_to_le, div_mod, lt_O_S. - |apply le_exp - [assumption - |apply le_S_S_to_le. - apply lt_mod_m_m. - apply lt_O_S - ] - ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_times - [apply divides_to_divides_b_true - [apply lt_O_ord_rem - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |cut (n = ord_rem (n*(exp p m)) p) - [rewrite > Hcut2. - apply divides_to_divides_ord_rem - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord_rem. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |assumption - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |intros. - cut (ord j p < S m) - [rewrite > div_p_ord_times - [rewrite > mod_p_ord_times - [rewrite > sym_times. - apply sym_eq. - apply exp_ord - [elim H1.assumption - |apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut2. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |assumption - ] - |cut (m = ord (n*(exp p m)) p) - [apply le_S_S. - rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |apply sym_times - ] - ] - ] - |intros. - rewrite > eq_p_ord_times. - rewrite > sym_plus. - apply (lt_to_le_to_lt ? (S m +ord_rem j p*S m)) - [apply lt_plus_l. - apply le_S_S. - cut (m = ord (n*(p \sup m)) p) - [rewrite > Hcut1. - apply divides_to_le_ord - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - |unfold ord. - rewrite > sym_times. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |reflexivity - ] - ] - |change with (S (ord_rem j p)*S m \le S n*S m). - apply le_times_l. - apply le_S_S. - cut (n = ord_rem (n*(p \sup m)) p) - [rewrite > Hcut1. - apply divides_to_le - [apply lt_O_ord_rem - [elim H1.assumption - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - ] - |apply divides_to_divides_ord_rem - [apply (divides_b_true_to_lt_O ? ? ? H7). - rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |rewrite > (times_n_O O). - apply lt_times - [assumption|apply lt_O_exp.assumption] - |assumption - |apply divides_b_true_to_divides. - assumption - ] - ] - |unfold ord_rem. - rewrite > sym_times. - rewrite > (p_ord_exp1 p ? m n) - [reflexivity - |assumption - |assumption - |reflexivity - ] - ] - ] - ] - |apply eq_iter_p_gen - - [intros. - elim (divides_b (x/S m) n);reflexivity - |intros.reflexivity +(* monotonicity; these roperty should be expressed at a more +genral level *) + +theorem le_pi: +∀n.∀p:nat → bool.∀g1,g2:nat → nat. + (∀i.ibigop_Strue // >bigop_Strue // @le_times + [@Hle // |@Hind #i #lti #Hpi @Hle [@lt_to_le @le_S_S @lti|@Hpi]] + |>bigop_Sfalse // >bigop_Sfalse // @Hind + #i #lti #Hpi @Hle [@lt_to_le @le_S_S @lti|@Hpi] ] ] -|elim H1.apply lt_to_le.assumption -] qed. +theorem exp_sigma: ∀n,a,p. + ∏_{i < n | p i} a = exp a (∑_{i < n | p i} 1). +#n #a #p elim n // #n1 cases (true_or_false (p n1)) #Hcase + [>bigop_Strue // >bigop_Strue // |>bigop_Sfalse // >bigop_Sfalse //] +qed. - -theorem iter_p_gen_2_eq: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to nat \to A. -\forall h11,h12,h21,h22: nat \to nat \to nat. -\forall n1,m1,n2,m2. -\forall p11,p21:nat \to bool. -\forall p12,p22:nat \to nat \to bool. -(\forall i,j. i < n2 \to j < m2 \to p21 i = true \to p22 i j = true \to -p11 (h11 i j) = true \land p12 (h11 i j) (h12 i j) = true -\land h21 (h11 i j) (h12 i j) = i \land h22 (h11 i j) (h12 i j) = j -\land h11 i j < n1 \land h12 i j < m1) \to -(\forall i,j. i < n1 \to j < m1 \to p11 i = true \to p12 i j = true \to -p21 (h21 i j) = true \land p22 (h21 i j) (h22 i j) = true -\land h11 (h21 i j) (h22 i j) = i \land h12 (h21 i j) (h22 i j) = j -\land (h21 i j) < n2 \land (h22 i j) < m2) \to -iter_p_gen n1 p11 A - (\lambda x:nat .iter_p_gen m1 (p12 x) A (\lambda y. g x y) baseA plusA) - baseA plusA = -iter_p_gen n2 p21 A - (\lambda x:nat .iter_p_gen m2 (p22 x) A (\lambda y. g (h11 x y) (h12 x y)) baseA plusA ) - baseA plusA. - -intros. -rewrite < (iter_p_gen2' ? ? ? ? ? ? ? ? H H1 H2). -letin ha:= (\lambda x,y.(((h11 x y)*m1) + (h12 x y))). -letin ha12:= (\lambda x.(h21 (x/m1) (x \mod m1))). -letin ha22:= (\lambda x.(h22 (x/m1) (x \mod m1))). - -apply (trans_eq ? ? -(iter_p_gen n2 p21 A (\lambda x:nat. iter_p_gen m2 (p22 x) A - (\lambda y:nat.(g (((h11 x y)*m1+(h12 x y))/m1) (((h11 x y)*m1+(h12 x y))\mod m1))) baseA plusA ) baseA plusA)) -[ - apply (iter_p_gen_knm A baseA plusA H H1 H2 (\lambda e. (g (e/m1) (e \mod m1))) ha ha12 ha22);intros - [ elim (and_true ? ? H6). - cut(O \lt m1) - [ cut(x/m1 < n1) - [ cut((x \mod m1) < m1) - [ elim (H4 ? ? Hcut1 Hcut2 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - split - [ split - [ split - [ split - [ assumption - | assumption - ] - | unfold ha. - unfold ha12. - unfold ha22. - rewrite > H14. - rewrite > H13. - apply sym_eq. - apply div_mod. - assumption - ] - | assumption - ] - | assumption - ] - | apply lt_mod_m_m. - assumption - ] - | apply (lt_times_n_to_lt m1) - [ assumption - | apply (le_to_lt_to_lt ? x) - [ apply (eq_plus_to_le ? ? (x \mod m1)). - apply div_mod. - assumption - | assumption - ] - ] - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H5. - apply (le_n_O_elim ? H9). - rewrite < times_n_O. - apply le_to_not_lt. - apply le_O_n. - ] - | elim (H3 ? ? H5 H6 H7 H8). - elim H9.clear H9. - elim H11.clear H11. - elim H9.clear H9. - elim H11.clear H11. - cut(((h11 i j)*m1 + (h12 i j))/m1 = (h11 i j)) - [ cut(((h11 i j)*m1 + (h12 i j)) \mod m1 = (h12 i j)) - [ split - [ split - [ split - [ apply true_to_true_to_andb_true - [ rewrite > Hcut. - assumption - | rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | unfold ha. - unfold ha12. - rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | unfold ha. - unfold ha22. - rewrite > Hcut1. - rewrite > Hcut. - assumption - ] - | cut(O \lt m1) - [ cut(O \lt n1) - [ apply (lt_to_le_to_lt ? ((h11 i j)*m1 + m1) ) - [ unfold ha. - apply (lt_plus_r). - assumption - | rewrite > sym_plus. - rewrite > (sym_times (h11 i j) m1). - rewrite > times_n_Sm. - rewrite > sym_times. - apply (le_times_l). - assumption - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H12. - apply (le_n_O_elim ? H11). - apply le_to_not_lt. - apply le_O_n - ] - | apply not_le_to_lt.unfold.intro. - generalize in match H10. - apply (le_n_O_elim ? H11). - apply le_to_not_lt. - apply le_O_n - ] - ] - | rewrite > (mod_plus_times m1 (h11 i j) (h12 i j)). - reflexivity. - assumption - ] - | rewrite > (div_plus_times m1 (h11 i j) (h12 i j)). - reflexivity. - assumption - ] - ] -| apply (eq_iter_p_gen1) - [ intros. reflexivity - | intros. - apply (eq_iter_p_gen1) - [ intros. reflexivity - | intros. - rewrite > (div_plus_times) - [ rewrite > (mod_plus_times) - [ reflexivity - | elim (H3 x x1 H5 H7 H6 H8). - assumption - ] - | elim (H3 x x1 H5 H7 H6 H8). - assumption - ] - ] +theorem times_pi: ∀n,p,f,g. + ∏_{ibigop_Strue // >bigop_Strue // >bigop_Strue // + |>bigop_Sfalse // >bigop_Sfalse // >bigop_Sfalse // ] -] qed. -theorem iter_p_gen_iter_p_gen: -\forall A:Type. -\forall baseA: A. -\forall plusA: A \to A \to A. -(symmetric A plusA) \to -(associative A plusA) \to -(\forall a:A.(plusA a baseA) = a)\to -\forall g: nat \to nat \to A. -\forall n,m. -\forall p11,p21:nat \to bool. -\forall p12,p22:nat \to nat \to bool. -(\forall x,y. x < n \to y < m \to - (p11 x \land p12 x y) = (p21 y \land p22 y x)) \to -iter_p_gen n p11 A - (\lambda x:nat.iter_p_gen m (p12 x) A (\lambda y. g x y) baseA plusA) - baseA plusA = -iter_p_gen m p21 A - (\lambda y:nat.iter_p_gen n (p22 y) A (\lambda x. g x y) baseA plusA ) - baseA plusA. -intros. -apply (iter_p_gen_2_eq A baseA plusA H H1 H2 (\lambda x,y. g x y) (\lambda x,y.y) (\lambda x,y.x) (\lambda x,y.y) (\lambda x,y.x) - n m m n p11 p21 p12 p22) - [intros.split - [split - [split - [split - [split - [apply (andb_true_true ? (p12 j i)). - rewrite > H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - |apply (andb_true_true_r (p11 j)). - rewrite > H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - ] - |reflexivity - ] - |reflexivity - ] - |assumption - ] - |assumption - ] - |intros.split - [split - [split - [split - [split - [apply (andb_true_true ? (p22 j i)). - rewrite < H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - |apply (andb_true_true_r (p21 j)). - rewrite < H3 - [rewrite > H6.rewrite > H7.reflexivity - |assumption - |assumption - ] - ] - |reflexivity - ] - |reflexivity - ] - |assumption - ] - |assumption - ] +theorem pi_1: ∀n,p. + ∏_{i < n | p i} 1 = 1. +#n #p elim n // #n1 #Hind cases (true_or_false (p n1)) #Hc + [>bigop_Strue >Hind // |>bigop_Sfalse // ] +qed. + +theorem exp_pi: ∀n,m,p,f. + ∏_{i < n | p i}(exp (f i) m) = exp (∏_{i < n | p i}(f i)) m. +#n #m #p #f elim m + [@pi_1 + |#m1 #Hind >times_pi >Hind % ] -qed. *)*) \ No newline at end of file +qed. -- 2.39.2