From d5fa086d0324953f6f6ec7955f7eaa60796eb69d Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Mon, 12 Nov 2007 16:39:44 +0000 Subject: [PATCH] relocated --- helm/software/matita/dama/ordered_sets.ma | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/helm/software/matita/dama/ordered_sets.ma b/helm/software/matita/dama/ordered_sets.ma index fe16db53f..a78d61184 100644 --- a/helm/software/matita/dama/ordered_sets.ma +++ b/helm/software/matita/dama/ordered_sets.ma @@ -12,7 +12,7 @@ (* *) (**************************************************************************) -set "baseuri" "cic:/matita/ordered_sets/". +set "baseuri" "cic:/matita/excedence/". include "higher_order_defs/relations.ma". include "nat/plus.ma". @@ -27,12 +27,12 @@ record excedence : Type ≝ { }. interpretation "excedence" 'nleq a b = - (cic:/matita/ordered_sets/exc_relation.con _ a b). + (cic:/matita/excedence/exc_relation.con _ a b). definition le ≝ λE:excedence.λa,b:E. ¬ (a ≰ b). interpretation "ordered sets less or equal than" 'leq a b = - (cic:/matita/ordered_sets/le.con _ a b). + (cic:/matita/excedence/le.con _ a b). lemma le_reflexive: ∀E.reflexive ? (le E). intros (E); unfold; cases E; simplify; intros (x); apply (H x); @@ -46,7 +46,7 @@ qed. definition apart ≝ λE:excedence.λa,b:E. a ≰ b ∨ b ≰ a. notation "a # b" non associative with precedence 50 for @{ 'apart $a $b}. -interpretation "apartness" 'apart a b = (cic:/matita/ordered_sets/apart.con _ a b). +interpretation "apartness" 'apart a b = (cic:/matita/excedence/apart.con _ a b). lemma apart_coreflexive: ∀E.coreflexive ? (apart E). intros (E); unfold; cases E; simplify; clear E; intros (x); unfold; @@ -67,7 +67,7 @@ definition eq ≝ λE:excedence.λa,b:E. ¬ (a # b). notation "a ≈ b" non associative with precedence 50 for @{ 'napart $a $b}. interpretation "alikeness" 'napart a b = - (cic:/matita/ordered_sets/eq.con _ a b). + (cic:/matita/excedence/eq.con _ a b). lemma eq_reflexive:∀E. reflexive ? (eq E). intros (E); unfold; cases E (T f cRf _); simplify; unfold Not; intros (x H); @@ -94,7 +94,7 @@ qed. definition lt ≝ λE:excedence.λa,b:E. a ≤ b ∧ a # b. interpretation "ordered sets less than" 'lt a b = - (cic:/matita/ordered_sets/lt.con _ a b). + (cic:/matita/excedence/lt.con _ a b). lemma lt_coreflexive: ∀E.coreflexive ? (lt E). intros (E); unfold; unfold Not; intros (x H); cases H (_ ABS); -- 2.39.2