From d61b0ec37e7943a058dc9c6381efe49db7eb575f Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Sun, 5 Nov 2006 17:04:12 +0000 Subject: [PATCH] Some clean-up here and there in dama (coercions removed, implicits added, etc.) --- helm/software/matita/dama/fields.ma | 6 +++--- .../matita/dama/integration_algebras.ma | 19 ++++++++----------- .../matita/dama/ordered_fields_ch0.ma | 15 +++++++-------- helm/software/matita/dama/reals.ma | 8 ++++---- helm/software/matita/dama/rings.ma | 4 ++-- 5 files changed, 24 insertions(+), 28 deletions(-) diff --git a/helm/software/matita/dama/fields.ma b/helm/software/matita/dama/fields.ma index 0618f4923..2aac4f446 100644 --- a/helm/software/matita/dama/fields.ma +++ b/helm/software/matita/dama/fields.ma @@ -24,7 +24,7 @@ record is_field (R:ring) (inv:∀x:R.x ≠ 0 → R) : Prop inv_inverse_: ∀x.∀p: x ≠ 0. mult ? (inv x p) x = 1 }. -lemma opp_opp: \forall R:ring. \forall x:R. (-(-x))=x. +lemma opp_opp: ∀R:ring. ∀x:R. --x=x. intros; apply (cancellationlaw ? (-x) ? ?); rewrite > (opp_inverse R x); @@ -50,10 +50,10 @@ theorem mult_comm: ∀F:field.symmetric ? (mult F). apply (mult_comm_ ? ? (field_properties F)). qed. -theorem inv_inverse: ∀F:field.∀x.∀p: x ≠ 0. mult ? (inv F x p) x = 1. +theorem inv_inverse: ∀F:field.∀x:F.∀p: x ≠ 0. (inv ? x p)*x = 1. intro; apply (inv_inverse_ ? ? (field_properties F)). qed. definition sum_field ≝ - λF:field. sum ? (plus F) (zero F) (one F). + λF:field. sum ? (plus F) 0 1. diff --git a/helm/software/matita/dama/integration_algebras.ma b/helm/software/matita/dama/integration_algebras.ma index fa43e944a..28185a785 100644 --- a/helm/software/matita/dama/integration_algebras.ma +++ b/helm/software/matita/dama/integration_algebras.ma @@ -27,7 +27,7 @@ record is_vector_space (K: field) (G:abelian_group) (emult:K→G→G) : Prop record vector_space (K:field): Type \def { vs_abelian_group :> abelian_group; emult: K → vs_abelian_group → vs_abelian_group; - vs_vector_space_properties :> is_vector_space K vs_abelian_group emult + vs_vector_space_properties :> is_vector_space ? vs_abelian_group emult }. interpretation "Vector space external product" 'times a b = @@ -39,8 +39,7 @@ record is_semi_norm (R:real) (V: vector_space R) (semi_norm:V→R) : Prop \def sn_triangle_inequality: ∀x,y:V. semi_norm (x + y) ≤ semi_norm x + semi_norm y }. -record is_norm (R:real) (V:vector_space R) (norm:V → R) - : Prop \def +record is_norm (R:real) (V:vector_space R) (norm:V → R) : Prop \def { n_semi_norm:> is_semi_norm ? ? norm; n_properness: ∀x:V. norm x = 0 → x = 0 }. @@ -91,9 +90,7 @@ record is_archimedean_riesz_space (K) (S:riesz_space K) : Prop { ars_archimedean: ∃u.∀n.∀a.∀p:n > O. le ? S (absolute_value ? S a) - (emult ? S - (inv ? (sum_field K n) (not_eq_sum_field_zero ? n p)) - u) → + ((inv ? (sum_field K n) (not_eq_sum_field_zero ? n p))* u) → a = 0 }. @@ -106,7 +103,7 @@ record is_integral (K) (R:archimedean_riesz_space K) (I:R→K) : Prop \def { i_positive: ∀f:R. le ? R 0 f → of_le K 0 (I f); i_linear1: ∀f,g:R. I (f + g) = I f + I g; - i_linear2: ∀f:R.∀k:K. I (emult ? R k f) = k*(I f) + i_linear2: ∀f:R.∀k:K. I (k*f) = k*(I f) }. definition is_weak_unit ≝ @@ -118,12 +115,14 @@ definition is_weak_unit ≝ ∀x:V. meet x unit = 0 → u = 0. *) λR:real.λV:archimedean_riesz_space R.λe:V.True. +(* Here we are avoiding a construction (the quotient space to define + f=g iff I(|f-g|)=0 *) record integration_riesz_space (R:real) : Type \def { irs_archimedean_riesz_space:> archimedean_riesz_space R; irs_unit: irs_archimedean_riesz_space; irs_weak_unit: is_weak_unit ? ? irs_unit; integral: irs_archimedean_riesz_space → R; - irs_integral_properties: is_integral R irs_archimedean_riesz_space integral; + irs_integral_properties: is_integral ? ? integral; irs_limit1: ∀f:irs_archimedean_riesz_space. tends_to ? @@ -154,7 +153,7 @@ record is_algebra (K: field) (V:vector_space K) (mult:V→V→V) (one:V) : Prop record algebra (K: field) (V:vector_space K) (a_one:V) : Type \def { a_mult: V → V → V; - a_algebra_properties: is_algebra K V a_mult a_one + a_algebra_properties: is_algebra ? ? a_mult a_one }. interpretation "Algebra product" 'times a b = @@ -188,8 +187,6 @@ Type \def axiom symmetric_a_mult: ∀K,R,one.∀A:f_algebra K R one. symmetric ? (a_mult ? ? ? A). -(* Here we are avoiding a construction (the quotient space to define - f=g iff I(|f-g|)=0 *) record integration_f_algebra (R:real) : Type \def { ifa_integration_riesz_space:> integration_riesz_space R; ifa_f_algebra:> diff --git a/helm/software/matita/dama/ordered_fields_ch0.ma b/helm/software/matita/dama/ordered_fields_ch0.ma index c7bf906f5..c06ea743e 100644 --- a/helm/software/matita/dama/ordered_fields_ch0.ma +++ b/helm/software/matita/dama/ordered_fields_ch0.ma @@ -21,7 +21,8 @@ record is_total_order_relation (C:Type) (le:C→C→Prop) : Type \def to_antisimmetry: ∀x,y:C. le x y → le y x → x=y }. -theorem to_transitive: ∀C,le. is_total_order_relation C le → transitive ? le. +theorem to_transitive: + ∀C.∀le:C→C→Prop. is_total_order_relation ? le → transitive ? le. intros; unfold transitive; intros; @@ -44,7 +45,7 @@ record is_ordered_field_ch0 (F:field) (le:F→F→Prop) : Type \def record ordered_field_ch0 : Type \def { of_field:> field; of_le: of_field → of_field → Prop; - of_ordered_field_properties:> is_ordered_field_ch0 of_field of_le + of_ordered_field_properties:> is_ordered_field_ch0 ? of_le }. interpretation "Ordered field le" 'leq a b = @@ -93,16 +94,14 @@ axiom not_eq_sum_field_zero: ∀F:ordered_field_ch0.∀n. O mult_plus_distr_left in H1; -generalize in match (eq_f ? ? (\lambda y. (-(x*0)) +y) ? ? H1);intro; +generalize in match (eq_f ? ? (λy. (-(x*0)) +y) ? ? H1);intro; clear H1; rewrite < plus_assoc in H; rewrite > opp_inverse in H; -- 2.39.2