From d6c41ecd6b4d6944becbef2f7f6a625c51d8867c Mon Sep 17 00:00:00 2001 From: Enrico Tassi <enrico.tassi@inria.fr> Date: Fri, 23 Nov 2007 18:15:10 +0000 Subject: [PATCH] since the previous commit fixed some bugs when the context has a deleted hp, the script is better --- helm/software/matita/dama/valued_lattice.ma | 18 ++++++++---------- 1 file changed, 8 insertions(+), 10 deletions(-) diff --git a/helm/software/matita/dama/valued_lattice.ma b/helm/software/matita/dama/valued_lattice.ma index 53855975d..6ad88424a 100644 --- a/helm/software/matita/dama/valued_lattice.ma +++ b/helm/software/matita/dama/valued_lattice.ma @@ -52,7 +52,7 @@ intros (R L x y z H H1); apply (plus_cancr ??? (μ(zâ§x))); apply (eq_trans ?? (μz + μx) ? (modular_mjp ????)); apply (eq_trans ?? (μz + μy) ? H); clear H; -apply (eq_trans ?? (μ(zâ¨y) + μ(zâ§y))); [1: apply eq_sym; apply modular_mjp] +apply (eq_trans ?? (μ(zâ¨y) + μ(zâ§y)) ? (modular_mjp ??z y)); apply (plus_cancl ??? (- μ (z ⨠y))); apply (eq_trans ?? ? ? (plus_assoc ????)); apply (eq_trans ?? (0+ μ(zâ§y)) ? (opp_inverse ??)); @@ -68,7 +68,7 @@ lapply (modular_mjp ?? y z) as H1; apply (plus_cancr ??? (μ(y ⧠z))); apply (eq_trans ?? ? ? H1); clear H1; apply (eq_trans ?? ? ?? (plus_assoc ????)); -apply (eq_trans ?? (μy+ μz + 0)); [2: apply feq_plusl; apply eq_sym; apply opp_inverse] +apply (eq_trans ?? (μy+ μz + 0) ?? (opp_inverse ??)); apply (eq_trans ?? ? ?? (plus_comm ???)); apply (eq_trans ?? (μy + μz) ?? (eq_sym ??? (zero_neutral ??))); apply eq_reflexive. @@ -80,8 +80,8 @@ lapply (modular_mjp ?? y z) as H1; apply (plus_cancl ??? (μ(y ⨠z))); apply (eq_trans ?? ? ? H1); clear H1; apply (eq_trans ????? (plus_comm ???)); -apply (eq_trans ?? ? ?? (plus_assoc ????)); -apply (eq_trans ?? (μy+ μz + 0)); [2: apply feq_plusl; apply eq_sym; apply opp_inverse] +apply (eq_trans ?? ? ?? (plus_assoc ????)); +apply (eq_trans ?? (μy+ μz + 0) ?? (opp_inverse ??)); apply (eq_trans ?? ? ?? (plus_comm ???)); apply (eq_trans ?? (μy + μz) ?? (eq_sym ??? (zero_neutral ??))); apply eq_reflexive. @@ -92,12 +92,10 @@ intros (R L x y z); lapply (modular_mjp ?? x (y ⨠z)) as H1; apply (eq_trans ?? (μ(xâ¨(yâ¨z))+ μ(xâ§(yâ¨z)) +-μ(xâ¨(yâ¨z)))); [2: apply feq_plusr; apply H1;] clear H1; apply (eq_trans ?? ? ?? (plus_comm ???)); -(* apply (eq_trans ?? (0+μ(xâ§(yâ§z))) ?? (opp_inverse ??)); ASSERT FALSE *) -apply (eq_trans ?? (- μ(xâ¨(yâ¨z))+ μ(xâ¨(yâ¨z))+ μ(xâ§(yâ¨z)))); [2: apply eq_sym; apply plus_assoc;] -apply (eq_trans ?? (0+μ(xâ§(yâ¨z)))); [2: apply feq_plusr; apply eq_sym; apply opp_inverse;] -(* apply (eq_trans ?? ? ? (eq_refl ??) (zero_neutral ??)); ASSERT FALSE *) -apply (eq_trans ?? (μ(xâ§(yâ¨z)))); [apply eq_reflexive] -apply eq_sym; apply zero_neutral. +apply (eq_trans ?? (- μ(xâ¨(yâ¨z))+ μ(xâ¨(yâ¨z))+ μ(xâ§(yâ¨z))) ?? (plus_assoc ????)); +apply (eq_trans ?? (0+μ(xâ§(yâ¨z))) ?? (opp_inverse ??)); +apply (eq_trans ?? (μ(xâ§(yâ¨z))) ?? (zero_neutral ??)); +apply eq_reflexive. qed. lemma modularjm: âR.âL:vlattice R.âx,y,z:L.μ(xâ¨(yâ§z))â(μx + μ(y ⧠z) + - μ(xâ§(yâ§z))). -- 2.39.2