From dc93c2cd98a57f17a452a461c6bcfaa7ec185427 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Mon, 22 Aug 2005 08:37:09 +0000 Subject: [PATCH] Paramodulation bug fixed. --- helm/matita/tests/fguidi.ma | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/helm/matita/tests/fguidi.ma b/helm/matita/tests/fguidi.ma index e72e28e5c..a665ca85d 100644 --- a/helm/matita/tests/fguidi.ma +++ b/helm/matita/tests/fguidi.ma @@ -51,11 +51,11 @@ qed. theorem eq_gen_S_S: \forall m,n. (S m) = (S n) \to m = n. intros. cut (pred (S m)) = (pred (S n)). -assumption. elim H. auto. (* bug paramodulation *) +assumption. elim H. auto paramodulation. qed. theorem eq_gen_S_S_cc: \forall m,n. m = n \to (S m) = (S n). -intros. elim H. auto. (* bug paramodulation *) +intros. elim H. auto paramodulation. qed. inductive le: nat \to nat \to Prop \def @@ -72,7 +72,7 @@ intros 3. elim H. auto paramodulation. apply eq_gen_S_O. exact n1. auto paramodu qed. theorem le_gen_x_O: \forall x. (le x O) \to (x = O). -intros. apply le_gen_x_O_aux. exact O. auto paramodulation. auto. (* bug paramodulation *) +intros. apply le_gen_x_O_aux. exact O. auto paramodulation. auto paramodulation. qed. theorem le_gen_x_O_cc: \forall x. (x = O) \to (le x O). @@ -82,18 +82,18 @@ qed. theorem le_gen_S_x_aux: \forall m,x,y. (le y x) \to (y = S m) \to (\exists n. x = (S n) \land (le m n)). intros 4. elim H. -apply eq_gen_S_O. exact m. elim H1. auto. (* bug paramodulation *) +apply eq_gen_S_O. exact m. elim H1. auto paramodulation. cut n = m. elim Hcut. apply ex_intro. exact n1. auto paramodulation. auto. (* paramodulation non trova la prova *) qed. theorem le_gen_S_x: \forall m,x. (le (S m) x) \to (\exists n. x = (S n) \land (le m n)). -intros. apply le_gen_S_x_aux. exact (S m). auto paramodulation. auto. (* bug paramodulation *) +intros. apply le_gen_S_x_aux. exact (S m). auto paramodulation. auto paramodulation. qed. theorem le_gen_S_x_cc: \forall m,x. (\exists n. x = (S n) \land (le m n)) \to (le (S m) x). -intros. elim H. elim H1. cut (S x1) = x. elim Hcut. auto paramodulation. elim H2. auto. (* bug paramodulation *) +intros. elim H. elim H1. cut (S x1) = x. elim Hcut. auto paramodulation. elim H2. auto paramodulation. qed. theorem le_gen_S_S: \forall m,n. (le (S m) (S n)) \to (le m n). -- 2.39.2