From e04738d23c02ea5d6b8a66372e6d62b73f52e2db Mon Sep 17 00:00:00 2001 From: Enrico Zoli Date: Fri, 15 Dec 2006 16:11:56 +0000 Subject: [PATCH] Fatou lemma achieved (up to a few more axioms here and there...) --- matita/dama/ordered_sets2.ma | 41 +++++++++++++++++++++++++++++++++--- 1 file changed, 38 insertions(+), 3 deletions(-) diff --git a/matita/dama/ordered_sets2.ma b/matita/dama/ordered_sets2.ma index b597d372c..26e1cdb3f 100644 --- a/matita/dama/ordered_sets2.ma +++ b/matita/dama/ordered_sets2.ma @@ -63,6 +63,31 @@ qed. interpretation "mk_bounded_sequence" 'hide_everything_but a = (cic:/matita/ordered_sets/bounded_sequence.ind#xpointer(1/1/1) _ _ a _ _). +lemma reduce_bas_seq: + ∀C.∀O:ordered_set C.∀a:nat→O.∀p.∀i. + bas_seq ? ? (mk_bounded_above_sequence ? ? a p) i = a i. + intros; + reflexivity. +qed. + +(*lemma reduce_bbs_seq: + ∀C.∀O:ordered_set C.∀a:nat→O.∀p.∀i. + bbs_seq ? ? (mk_bounded_below_sequence ? ? a p) i = a i. + intros; + reflexivity. +qed.*) + +axiom inf_extensional: + ∀C.∀O:dedekind_sigma_complete_ordered_set C. + ∀a,b:bounded_below_sequence ? O. + (∀i.a i = b i) → inf ? ? a = inf ? O b. + +lemma eq_to_le: ∀C.∀O:ordered_set C.∀x,y:O.x=y → x ≤ y. + intros; + rewrite > H; + apply (or_reflexive ? ? O). +qed. + theorem fatou: ∀C.∀O':dedekind_sigma_complete_ordered_set C. ∀f:O'→O'. ∀H:is_order_continuous ? ? f. @@ -81,11 +106,21 @@ theorem fatou: | skip ] | intros; - rewrite > eq_f_liminf_sup_f_inf; + rewrite > eq_f_liminf_sup_f_inf in ⊢ (? ? ? % ?); [ unfold liminf; apply le_to_le_sup_sup; - elim daemon (*(* f inf < inf f *) - apply le_f_inf_inf_f*) + intro; + rewrite > reduce_bas_seq; + rewrite > reduce_bas_seq; + apply (or_transitive ? O' O'); + [2: apply le_f_inf_inf_f; + assumption + | skip + | apply eq_to_le; + apply inf_extensional; + intro; + reflexivity + ] | assumption ] ]. -- 2.39.2