From e142e937772dd7b92152057f7fe9402d240b7b7e Mon Sep 17 00:00:00 2001 From: Andrea Asperti Date: Fri, 9 Nov 2012 15:09:23 +0000 Subject: [PATCH] done --- matita/matita/lib/turing/turing.ma | 401 +++++++++++++---------------- 1 file changed, 183 insertions(+), 218 deletions(-) diff --git a/matita/matita/lib/turing/turing.ma b/matita/matita/lib/turing/turing.ma index d76d096c5..c9412adb0 100644 --- a/matita/matita/lib/turing/turing.ma +++ b/matita/matita/lib/turing/turing.ma @@ -3,9 +3,10 @@ include "basics/vectors.ma". (* We do not distinuish an input tape *) -record mTM (sig:FinSet): Type[1] ≝ +(* tapes_no = number of ADDITIONAL working tapes *) + +record mTM (sig:FinSet) (tapes_no:nat) : Type[1] ≝ { states : FinSet; - tapes_no: nat; (* additional working tapes *) trans : states × (Vector (option sig) (S tapes_no)) → states × (Vector (option (sig × move))(S tapes_no)); start: states; @@ -17,11 +18,22 @@ record mconfig (sig,states:FinSet) (n:nat): Type[0] ≝ ctapes : Vector (tape sig) (S n) }. +lemma mconfig_expand: ∀sig,n,Q,c. + c = mk_mconfig sig Q n (cstate ??? c) (ctapes ??? c). +#sig #n #Q * // +qed. + +lemma mconfig_eq : ∀sig,n,M,c1,c2. + cstate sig n M c1 = cstate sig n M c2 → + ctapes sig n M c1 = ctapes sig n M c2 → c1 = c2. +#sig #n #M1 * #s1 #t1 * #s2 #t2 // +qed. + definition current_chars ≝ λsig.λn.λtapes. vec_map ?? (current sig) (S n) tapes. -definition step ≝ λsig.λM:mTM sig.λc:mconfig sig (states ? M) (tapes_no ? M). - let 〈news,mvs〉 ≝ trans sig M 〈cstate ??? c,current_chars ?? (ctapes ??? c)〉 in +definition step ≝ λsig.λn.λM:mTM sig n.λc:mconfig sig (states ?? M) n. + let 〈news,mvs〉 ≝ trans sig n M 〈cstate ??? c,current_chars ?? (ctapes ??? c)〉 in mk_mconfig ??? news (pmap_vec ??? (tape_move sig) ? (ctapes ??? c) mvs). @@ -32,121 +44,123 @@ elim n // normalize // qed. (************************** Realizability *************************************) -definition loopM ≝ λsig.λM:mTM sig.λi,cin. - loop ? i (step sig M) (λc.halt sig M (cstate ??? c)) cin. +definition loopM ≝ λsig,n.λM:mTM sig n.λi,cin. + loop ? i (step sig n M) (λc.halt sig n M (cstate ??? c)) cin. -lemma loopM_unfold : ∀sig,M,i,cin. - loopM sig M i cin = loop ? i (step sig M) (λc.halt sig M (cstate ??? c)) cin. +lemma loopM_unfold : ∀sig,n,M,i,cin. + loopM sig n M i cin = loop ? i (step sig n M) (λc.halt sig n M (cstate ??? c)) cin. // qed. -definition initc ≝ λsig.λM:mTM sig.λtapes. - mk_mconfig sig (states sig M) (tapes_no sig M) (start sig M) tapes. +definition initc ≝ λsig,n.λM:mTM sig n.λtapes. + mk_mconfig sig (states sig n M) n (start sig n M) tapes. -definition Realize ≝ λsig.λM:mTM sig.λR:relation (Vector (tape sig) ?). +definition Realize ≝ λsig,n.λM:mTM sig n.λR:relation (Vector (tape sig) ?). ∀t.∃i.∃outc. - loopM sig M i (initc sig M t) = Some ? outc ∧ R t (ctapes ??? outc). + loopM sig n M i (initc sig n M t) = Some ? outc ∧ R t (ctapes ??? outc). -definition WRealize ≝ λsig.λM:mTM sig.λR:relation (Vector (tape sig) ?). +definition WRealize ≝ λsig,n.λM:mTM sig n.λR:relation (Vector (tape sig) ?). ∀t,i,outc. - loopM sig M i (initc sig M t) = Some ? outc → R t (ctapes ??? outc). + loopM sig n M i (initc sig n M t) = Some ? outc → R t (ctapes ??? outc). -definition Terminate ≝ λsig.λM:mTM sig.λt. ∃i,outc. - loopM sig M i (initc sig M t) = Some ? outc. +definition Terminate ≝ λsig,n.λM:mTM sig n.λt. ∃i,outc. + loopM sig n M i (initc sig n M t) = Some ? outc. (* notation "M \vDash R" non associative with precedence 45 for @{ 'models $M $R}. *) -interpretation "multi realizability" 'models M R = (Realize ? M R). +interpretation "multi realizability" 'models M R = (Realize ?? M R). (* notation "M \VDash R" non associative with precedence 45 for @{ 'wmodels $M $R}. *) -interpretation "weak multi realizability" 'wmodels M R = (WRealize ? M R). +interpretation "weak multi realizability" 'wmodels M R = (WRealize ?? M R). -interpretation "multi termination" 'fintersects M t = (Terminate ? M t). +interpretation "multi termination" 'fintersects M t = (Terminate ?? M t). -lemma WRealize_to_Realize : ∀sig.∀M: mTM sig.∀R. +lemma WRealize_to_Realize : ∀sig,n .∀M: mTM sig n.∀R. (∀t.M ↓ t) → M ⊫ R → M ⊨ R. -#sig #M #R #HT #HW #t cases (HT … t) #i * #outc #Hloop +#sig #n #M #R #HT #HW #t cases (HT … t) #i * #outc #Hloop @(ex_intro … i) @(ex_intro … outc) % // @(HW … i) // qed. -theorem Realize_to_WRealize : ∀sig.∀M:mTM sig.∀R. +theorem Realize_to_WRealize : ∀sig,n.∀M:mTM sig n.∀R. M ⊨ R → M ⊫ R. -#sig #M #R #H1 #inc #i #outc #Hloop +#sig #n #M #R #H1 #inc #i #outc #Hloop cases (H1 inc) #k * #outc1 * #Hloop1 #HR >(loop_eq … Hloop Hloop1) // qed. -definition accRealize ≝ λsig.λM:mTM sig.λacc:states sig M.λRtrue,Rfalse. +definition accRealize ≝ λsig,n.λM:mTM sig n.λacc:states sig n M.λRtrue,Rfalse. ∀t.∃i.∃outc. - loopM sig M i (initc sig M t) = Some ? outc ∧ + loopM sig n M i (initc sig n M t) = Some ? outc ∧ (cstate ??? outc = acc → Rtrue t (ctapes ??? outc)) ∧ (cstate ??? outc ≠ acc → Rfalse t (ctapes ??? outc)). (* notation "M ⊨ [q: R1,R2]" non associative with precedence 45 for @{ 'cmodels $M $q $R1 $R2}. *) -interpretation "conditional multi realizability" 'cmodels M q R1 R2 = (accRealize ? M q R1 R2). +interpretation "conditional multi realizability" 'cmodels M q R1 R2 = (accRealize ?? M q R1 R2). (*************************** guarded realizablity *****************************) -definition GRealize ≝ λsig.λM:mTM sig.λPre:Vector (tape sig) ? →Prop.λR:relation (Vector (tape sig) ?). -∀t.Pre t → ∃i.∃outc. - loopM sig M i (initc sig M t) = Some ? outc ∧ R t (ctapes ??? outc). +definition GRealize ≝ λsig,n.λM:mTM sig n. + λPre:Vector (tape sig) ? →Prop.λR:relation (Vector (tape sig) ?). + ∀t.Pre t → ∃i.∃outc. + loopM sig n M i (initc sig n M t) = Some ? outc ∧ R t (ctapes ??? outc). -definition accGRealize ≝ λsig.λM:mTM sig.λacc:states sig M. +definition accGRealize ≝ λsig,n.λM:mTM sig n.λacc:states sig n M. λPre: Vector (tape sig) ? → Prop.λRtrue,Rfalse. ∀t.Pre t → ∃i.∃outc. - loopM sig M i (initc sig M t) = Some ? outc ∧ + loopM sig n M i (initc sig n M t) = Some ? outc ∧ (cstate ??? outc = acc → Rtrue t (ctapes ??? outc)) ∧ (cstate ??? outc ≠ acc → Rfalse t (ctapes ??? outc)). -lemma WRealize_to_GRealize : ∀sig.∀M: mTM sig.∀Pre,R. - (∀t.Pre t → M ↓ t) → M ⊫ R → GRealize sig M Pre R. -#sig #M #Pre #R #HT #HW #t #HPre cases (HT … t HPre) #i * #outc #Hloop +lemma WRealize_to_GRealize : ∀sig,n.∀M: mTM sig n.∀Pre,R. + (∀t.Pre t → M ↓ t) → M ⊫ R → GRealize sig n M Pre R. +#sig #n #M #Pre #R #HT #HW #t #HPre cases (HT … t HPre) #i * #outc #Hloop @(ex_intro … i) @(ex_intro … outc) % // @(HW … i) // qed. -lemma Realize_to_GRealize : ∀sig.∀M: mTM sig.∀P,R. - M ⊨ R → GRealize sig M P R. -#alpha #M #Pre #R #HR #t #HPre +lemma Realize_to_GRealize : ∀sig,n.∀M: mTM sig n.∀P,R. + M ⊨ R → GRealize sig n M P R. +#alpha #n #M #Pre #R #HR #t #HPre cases (HR t) -HR #k * #outc * #Hloop #HR @(ex_intro ?? k) @(ex_intro ?? outc) % [ @Hloop | @HR ] qed. -lemma acc_Realize_to_acc_GRealize: ∀sig.∀M:mTM sig.∀q:states sig M.∀P,R1,R2. - M ⊨ [q:R1,R2] → accGRealize sig M q P R1 R2. -#alpha #M #q #Pre #R1 #R2 #HR #t #HPre +lemma acc_Realize_to_acc_GRealize: ∀sig,n.∀M:mTM sig n.∀q:states sig n M.∀P,R1,R2. + M ⊨ [q:R1,R2] → accGRealize sig n M q P R1 R2. +#alpha #n #M #q #Pre #R1 #R2 #HR #t #HPre cases (HR t) -HR #k * #outc * * #Hloop #HRtrue #HRfalse @(ex_intro ?? k) @(ex_intro ?? outc) % [ % [@Hloop] @HRtrue | @HRfalse] qed. (******************************** monotonicity ********************************) -lemma Realize_to_Realize : ∀sig.∀M:mTM sig.∀R1,R2. - R1 ⊆ R2 → Realize sig M R1 → Realize sig M R2. -#alpha #M #R1 #R2 #Himpl #HR1 #intape +lemma Realize_to_Realize : ∀sig,n.∀M:mTM sig n.∀R1,R2. + R1 ⊆ R2 → M ⊨ R1 → M ⊨ R2. +#alpha #n #M #R1 #R2 #Himpl #HR1 #intape cases (HR1 intape) -HR1 #k * #outc * #Hloop #HR1 @(ex_intro ?? k) @(ex_intro ?? outc) % /2/ qed. -lemma WRealize_to_WRealize: ∀sig.∀M:mTM sig.∀R1,R2. - R1 ⊆ R2 → WRealize sig M R1 → WRealize ? M R2. -#alpha #M #R1 #R2 #Hsub #HR1 #intape #i #outc #Hloop +lemma WRealize_to_WRealize: ∀sig,n.∀M:mTM sig n.∀R1,R2. + R1 ⊆ R2 → WRealize sig n M R1 → WRealize sig n M R2. +#alpha #n #M #R1 #R2 #Hsub #HR1 #intape #i #outc #Hloop @Hsub @(HR1 … i) @Hloop qed. -lemma GRealize_to_GRealize : ∀sig.∀M:mTM sig.∀P,R1,R2. - R1 ⊆ R2 → GRealize sig M P R1 → GRealize sig M P R2. -#alpha #M #P #R1 #R2 #Himpl #HR1 #intape #HP +lemma GRealize_to_GRealize : ∀sig,n.∀M:mTM sig n.∀P,R1,R2. + R1 ⊆ R2 → GRealize sig n M P R1 → GRealize sig n M P R2. +#alpha #n #M #P #R1 #R2 #Himpl #HR1 #intape #HP cases (HR1 intape HP) -HR1 #k * #outc * #Hloop #HR1 @(ex_intro ?? k) @(ex_intro ?? outc) % /2/ qed. -lemma GRealize_to_GRealize_2 : ∀sig.∀M:mTM sig.∀P1,P2,R1,R2. - P2 ⊆ P1 → R1 ⊆ R2 → GRealize sig M P1 R1 → GRealize sig M P2 R2. -#alpha #M #P1 #P2 #R1 #R2 #Himpl1 #Himpl2 #H1 #intape #HP +lemma GRealize_to_GRealize_2 : ∀sig,n.∀M:mTM sig n.∀P1,P2,R1,R2. + P2 ⊆ P1 → R1 ⊆ R2 → GRealize sig n M P1 R1 → GRealize sig n M P2 R2. +#alpha #n #M #P1 #P2 #R1 #R2 #Himpl1 #Himpl2 #H1 #intape #HP cases (H1 intape (Himpl1 … HP)) -H1 #k * #outc * #Hloop #H1 @(ex_intro ?? k) @(ex_intro ?? outc) % /2/ qed. -lemma acc_Realize_to_acc_Realize: ∀sig.∀M:mTM sig.∀q:states sig M.∀R1,R2,R3,R4. +lemma acc_Realize_to_acc_Realize: ∀sig,n.∀M:mTM sig n.∀q:states sig n M. + ∀R1,R2,R3,R4. R1 ⊆ R3 → R2 ⊆ R4 → M ⊨ [q:R1,R2] → M ⊨ [q:R3,R4]. -#alpha #M #q #R1 #R2 #R3 #R4 #Hsub13 #Hsub24 #HRa #intape +#alpha #n #M #q #R1 #R2 #R3 #R4 #Hsub13 #Hsub24 #HRa #intape cases (HRa intape) -HRa #k * #outc * * #Hloop #HRtrue #HRfalse @(ex_intro ?? k) @(ex_intro ?? outc) % [ % [@Hloop] #Hq @Hsub13 @HRtrue // | #Hq @Hsub24 @HRfalse //] @@ -154,14 +168,14 @@ qed. (**************************** A canonical relation ****************************) -definition R_mTM ≝ λsig.λM:mTM sig.λq.λt1,t2. +definition R_mTM ≝ λsig,n.λM:mTM sig n.λq.λt1,t2. ∃i,outc. - loopM ? M i (mk_mconfig ??? q t1) = Some ? outc ∧ + loopM ? n M i (mk_mconfig ??? q t1) = Some ? outc ∧ t2 = (ctapes ??? outc). -lemma R_mTM_to_R: ∀sig.∀M:mTM sig.∀R. ∀t1,t2. - M ⊫ R → R_mTM ? M (start sig M) t1 t2 → R t1 t2. -#sig #M #R #t1 #t2 whd in ⊢ (%→?); #HMR * #i * #outc * +lemma R_mTM_to_R: ∀sig,n.∀M:mTM sig n.∀R. ∀t1,t2. + M ⊫ R → R_mTM ?? M (start sig n M) t1 t2 → R t1 t2. +#sig #n #M #R #t1 #t2 whd in ⊢ (%→?); #HMR * #i * #outc * #Hloop #Ht2 >Ht2 @(HMR … Hloop) qed. @@ -173,57 +187,69 @@ qed. definition nop_states ≝ initN 1. definition start_nop : initN 1 ≝ mk_Sig ?? 0 (le_n … 1). *) -definition mnop ≝ - λalpha:FinSet.λn.mk_mTM alpha nop_states n +definition nop ≝ + λalpha:FinSet.λn.mk_mTM alpha n nop_states (λp.let 〈q,a〉 ≝ p in 〈q,mk_Vector ? (S n) (make_list ? (None ?) (S n)) ?〉) start_nop (λ_.true). elim n normalize // qed. -definition R_mnop ≝ λalpha,n.λt1,t2:Vector (tape alpha) (S n).t2 = t1. +definition R_nop ≝ λalpha,n.λt1,t2:Vector (tape alpha) (S n).t2 = t1. -lemma sem_mnop : - ∀alpha,n.mnop alpha n⊨ R_mnop alpha n. +lemma sem_nop : + ∀alpha,n.nop alpha n⊨ R_nop alpha n. #alpha #n #intapes @(ex_intro ?? 1) @(ex_intro … (mk_mconfig ??? start_nop intapes)) % % qed. -lemma mnop_single_state: ∀sig,n.∀q1,q2:states ? (mnop sig n). q1 = q2. +lemma nop_single_state: ∀sig,n.∀q1,q2:states ? n (nop sig n). q1 = q2. normalize #sig #n0 * #n #ltn1 * #m #ltm1 generalize in match ltn1; generalize in match ltm1; <(le_n_O_to_eq … (le_S_S_to_le … ltn1)) <(le_n_O_to_eq … (le_S_S_to_le … ltm1)) // qed. (************************** Sequential Composition ****************************) +definition null_action ≝ λsig.λn. +mk_Vector ? (S n) (make_list (option (sig × move)) (None ?) (S n)) ?. +elim (S n) // normalize // +qed. -definition seq_trans ≝ λsig. λM1,M2 : TM sig. +lemma tape_move_null_action: ∀sig,n,tapes. + pmap_vec ??? (tape_move sig) (S n) tapes (null_action sig n) = tapes. +#sig #n #tapes cases tapes -tapes #tapes whd in match (null_action ??); +#Heq @Vector_eq Hhalt >Htrans % qed. -lemma trans_seq_liftR : ∀sig,M1,M2,s,a,news,move. - halt ? M2 s = false → - trans sig M2 〈s,a〉 = 〈news,move〉 → - trans sig (seq sig M1 M2) 〈inr … s,a〉 = 〈inr … news,move〉. -#sig #M1 * #Q2 #T2 #init2 #halt2 #s #a #news #move +lemma trans_seq_liftR : ∀sig,n,M1,M2,s,a,news,move. + halt ?? M2 s = false → + trans sig n M2 〈s,a〉 = 〈news,move〉 → + trans sig n (seq sig n M1 M2) 〈inr … s,a〉 = 〈inr … news,move〉. +#sig #n #M1 * #Q2 #T2 #init2 #halt2 #s #a #news #move #Hhalt #Htrans whd in ⊢ (??%?); >Hhalt >Htrans % qed. -lemma step_seq_liftR : ∀sig,M1,M2,c0. - halt ? M2 (cstate ?? c0) = false → - step sig (seq sig M1 M2) (lift_confR sig (states ? M1) (states ? M2) c0) = - lift_confR sig (states ? M1) (states ? M2) (step sig M2 c0). -#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s #t - lapply (refl ? (trans ?? 〈s,current sig t〉)) - cases (trans ?? 〈s,current sig t〉) in ⊢ (???% → %); - #s0 #m0 cases t - [ #Heq #Hhalt - | 2,3: #s1 #l1 #Heq #Hhalt - |#ls #s1 #rs #Heq #Hhalt ] - whd in ⊢ (???(????%)); >Heq whd in ⊢ (???%); - whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_seq_liftR … Heq) // +lemma step_seq_liftR : ∀sig,n,M1,M2,c0. + halt ?? M2 (cstate ??? c0) = false → + step sig n (seq sig n M1 M2) (lift_confR sig n (states ?? M1) (states ?? M2) c0) = + lift_confR sig n (states ?? M1) (states ?? M2) (step sig n M2 c0). +#sig #n #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s #t +lapply (refl ? (trans ??? 〈s,current_chars sig n t〉)) +cases (trans ??? 〈s,current_chars sig n t〉) in ⊢ (???% → %); +#s0 #m0 #Heq #Hhalt whd in ⊢ (???(?????%)); >Heq whd in ⊢ (???%); +whd in ⊢ (??(????%)?); whd in ⊢ (??%?); >(trans_seq_liftR … Heq) // qed. -lemma step_seq_liftL : ∀sig,M1,M2,c0. - halt ? M1 (cstate ?? c0) = false → - step sig (seq sig M1 M2) (lift_confL sig (states ? M1) (states ? M2) c0) = - lift_confL sig ?? (step sig M1 c0). -#sig #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s #t - lapply (refl ? (trans ?? 〈s,current sig t〉)) - cases (trans ?? 〈s,current sig t〉) in ⊢ (???% → %); - #s0 #m0 cases t - [ #Heq #Hhalt - | 2,3: #s1 #l1 #Heq #Hhalt - |#ls #s1 #rs #Heq #Hhalt ] - whd in ⊢ (???(????%)); >Heq whd in ⊢ (???%); - whd in ⊢ (??(???%)?); whd in ⊢ (??%?); >(trans_seq_liftL … Heq) // +lemma step_seq_liftL : ∀sig,n,M1,M2,c0. + halt ?? M1 (cstate ??? c0) = false → + step sig n (seq sig n M1 M2) (lift_confL sig n (states ?? M1) (states ?? M2) c0) = + lift_confL sig n ?? (step sig n M1 c0). +#sig #n #M1 (* * #Q1 #T1 #init1 #halt1 *) #M2 * #s #t + lapply (refl ? (trans ??? 〈s,current_chars sig n t〉)) + cases (trans ??? 〈s,current_chars sig n t〉) in ⊢ (???% → %); + #s0 #m0 #Heq #Hhalt + whd in ⊢ (???(?????%)); >Heq whd in ⊢ (???%); + whd in ⊢ (??(????%)?); whd in ⊢ (??%?); >(trans_seq_liftL … Heq) // qed. -lemma trans_liftL_true : ∀sig,M1,M2,s,a. - halt ? M1 s = true → - trans sig (seq sig M1 M2) 〈inl … s,a〉 = 〈inr … (start ? M2),None ?〉. -#sig #M1 #M2 #s #a #Hhalt whd in ⊢ (??%?); >Hhalt % +lemma trans_liftL_true : ∀sig,n,M1,M2,s,a. + halt ?? M1 s = true → + trans sig n (seq sig n M1 M2) 〈inl … s,a〉 = 〈inr … (start ?? M2),null_action sig n〉. +#sig #n #M1 #M2 #s #a #Hhalt whd in ⊢ (??%?); >Hhalt % qed. -lemma eq_ctape_lift_conf_L : ∀sig,S1,S2,outc. - ctape sig (FinSum S1 S2) (lift_confL … outc) = ctape … outc. -#sig #S1 #S2 #outc cases outc #s #t % +lemma eq_ctape_lift_conf_L : ∀sig,n,S1,S2,outc. + ctapes sig (FinSum S1 S2) n (lift_confL … outc) = ctapes … outc. +#sig #n #S1 #S2 #outc cases outc #s #t % qed. -lemma eq_ctape_lift_conf_R : ∀sig,S1,S2,outc. - ctape sig (FinSum S1 S2) (lift_confR … outc) = ctape … outc. -#sig #S1 #S2 #outc cases outc #s #t % +lemma eq_ctape_lift_conf_R : ∀sig,n,S1,S2,outc. + ctapes sig (FinSum S1 S2) n (lift_confR … outc) = ctapes … outc. +#sig #n #S1 #S2 #outc cases outc #s #t % qed. -theorem sem_seq: ∀sig.∀M1,M2:TM sig.∀R1,R2. +theorem sem_seq: ∀sig,n.∀M1,M2:mTM sig n.∀R1,R2. M1 ⊨ R1 → M2 ⊨ R2 → M1 · M2 ⊨ R1 ∘ R2. -#sig #M1 #M2 #R1 #R2 #HR1 #HR2 #t +#sig #n #M1 #M2 #R1 #R2 #HR1 #HR2 #t cases (HR1 t) #k1 * #outc1 * #Hloop1 #HM1 -cases (HR2 (ctape sig (states ? M1) outc1)) #k2 * #outc2 * #Hloop2 #HM2 +cases (HR2 (ctapes sig (states ?? M1) n outc1)) #k2 * #outc2 * #Hloop2 #HM2 @(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) % [@(loop_merge ??????????? - (loop_lift ??? (lift_confL sig (states sig M1) (states sig M2)) - (step sig M1) (step sig (seq sig M1 M2)) - (λc.halt sig M1 (cstate … c)) - (λc.halt_liftL ?? (halt sig M1) (cstate … c)) … Hloop1)) + (loop_lift ??? (lift_confL sig n (states sig n M1) (states sig n M2)) + (step sig n M1) (step sig n (seq sig n M1 M2)) + (λc.halt sig n M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig n M1) (cstate … c)) … Hloop1)) [ * * [ #sl #tl whd in ⊢ (??%? → ?); #Hl % | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] || #c0 #Hhalt (trans_liftL_true sig M1 M2 ??) + >(trans_liftL_true sig n M1 M2 ??) [ whd in ⊢ (??%?); whd in ⊢ (???%); - @config_eq whd in ⊢ (???%); // + @mconfig_eq whd in ⊢ (???%); // | @(loop_Some ?????? Hloop10) ] ] -| @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1))) +| @(ex_intro … (ctapes ? (FinSum (states ?? M1) (states ?? M2)) ? (lift_confL … outc1))) % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R // ] qed. -theorem sem_seq_app: ∀sig.∀M1,M2:TM sig.∀R1,R2,R3. +theorem sem_seq_app: ∀sig,n.∀M1,M2:mTM sig n.∀R1,R2,R3. M1 ⊨ R1 → M2 ⊨ R2 → R1 ∘ R2 ⊆ R3 → M1 · M2 ⊨ R3. -#sig #M1 #M2 #R1 #R2 #R3 #HR1 #HR2 #Hsub +#sig #n #M1 #M2 #R1 #R2 #R3 #HR1 #HR2 #Hsub #t cases (sem_seq … HR1 HR2 t) #k * #outc * #Hloop #Houtc @(ex_intro … k) @(ex_intro … outc) % [@Hloop |@Hsub @Houtc] qed. (* composition with guards *) -theorem sem_seq_guarded: ∀sig.∀M1,M2:TM sig.∀Pre1,Pre2,R1,R2. - GRealize sig M1 Pre1 R1 → GRealize sig M2 Pre2 R2 → +theorem sem_seq_guarded: ∀sig,n.∀M1,M2:mTM sig n.∀Pre1,Pre2,R1,R2. + GRealize sig n M1 Pre1 R1 → GRealize sig n M2 Pre2 R2 → (∀t1,t2.Pre1 t1 → R1 t1 t2 → Pre2 t2) → - GRealize sig (M1 · M2) Pre1 (R1 ∘ R2). -#sig #M1 #M2 #Pre1 #Pre2 #R1 #R2 #HGR1 #HGR2 #Hinv #t1 #HPre1 + GRealize sig n (M1 · M2) Pre1 (R1 ∘ R2). +#sig #n #M1 #M2 #Pre1 #Pre2 #R1 #R2 #HGR1 #HGR2 #Hinv #t1 #HPre1 cases (HGR1 t1 HPre1) #k1 * #outc1 * #Hloop1 #HM1 -cases (HGR2 (ctape sig (states ? M1) outc1) ?) +cases (HGR2 (ctapes sig (states ?? M1) n outc1) ?) [2: @(Hinv … HPre1 HM1)] #k2 * #outc2 * #Hloop2 #HM2 @(ex_intro … (k1+k2)) @(ex_intro … (lift_confR … outc2)) % [@(loop_merge ??????????? - (loop_lift ??? (lift_confL sig (states sig M1) (states sig M2)) - (step sig M1) (step sig (seq sig M1 M2)) - (λc.halt sig M1 (cstate … c)) - (λc.halt_liftL ?? (halt sig M1) (cstate … c)) … Hloop1)) + (loop_lift ??? (lift_confL sig n (states sig n M1) (states sig n M2)) + (step sig n M1) (step sig n (seq sig n M1 M2)) + (λc.halt sig n M1 (cstate … c)) + (λc.halt_liftL ?? (halt sig n M1) (cstate … c)) … Hloop1)) [ * * [ #sl #tl whd in ⊢ (??%? → ?); #Hl % | #sr #tr whd in ⊢ (??%? → ?); #Hr destruct (Hr) ] || #c0 #Hhalt (trans_liftL_true sig M1 M2 ??) + >(trans_liftL_true sig n M1 M2 ??) [ whd in ⊢ (??%?); whd in ⊢ (???%); - @config_eq whd in ⊢ (???%); // + @mconfig_eq whd in ⊢ (???%); // | @(loop_Some ?????? Hloop10) ] ] -| @(ex_intro … (ctape ? (FinSum (states ? M1) (states ? M2)) (lift_confL … outc1))) +| @(ex_intro … (ctapes ? (FinSum (states ?? M1) (states ?? M2)) n (lift_confL … outc1))) % // >eq_ctape_lift_conf_L >eq_ctape_lift_conf_R // ] qed. -theorem sem_seq_app_guarded: ∀sig.∀M1,M2:TM sig.∀Pre1,Pre2,R1,R2,R3. - GRealize sig M1 Pre1 R1 → GRealize sig M2 Pre2 R2 → +theorem sem_seq_app_guarded: ∀sig,n.∀M1,M2:mTM sig n.∀Pre1,Pre2,R1,R2,R3. + GRealize sig n M1 Pre1 R1 → GRealize sig n M2 Pre2 R2 → (∀t1,t2.Pre1 t1 → R1 t1 t2 → Pre2 t2) → R1 ∘ R2 ⊆ R3 → - GRealize sig (M1 · M2) Pre1 R3. -#sig #M1 #M2 #Pre1 #Pre2 #R1 #R2 #R3 #HR1 #HR2 #Hinv #Hsub + GRealize sig n (M1 · M2) Pre1 R3. +#sig #n #M1 #M2 #Pre1 #Pre2 #R1 #R2 #R3 #HR1 #HR2 #Hinv #Hsub #t #HPre1 cases (sem_seq_guarded … HR1 HR2 Hinv t HPre1) #k * #outc * #Hloop #Houtc @(ex_intro … k) @(ex_intro … outc) % [@Hloop |@Hsub @Houtc] qed. - - - - - - - -definition stop ≝ λsig.λM:TM sig.λc:config sig M. - halt sig M (state sig M c). - -let rec loop (A:Type[0]) n (f:A→A) p a on n ≝ - match n with - [ O ⇒ None ? - | S m ⇒ if p a then (Some ? a) else loop A m f p (f a) - ]. - -(* Compute ? M f states that f is computed by M *) -definition Compute ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). -∀l.∃i.∃c. - loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ - out ?? c = f l. - -(* for decision problems, we accept a string if on termination -output is not empty *) - -definition ComputeB ≝ λsig.λM:TM sig.λf:(list sig) → bool. -∀l.∃i.∃c. - loop ? i (step sig M) (stop sig M) (init sig M l) = Some ? c ∧ - (isnilb ? (out ?? c) = false). - -(* alternative approach. -We define the notion of computation. The notion must be constructive, -since we want to define functions over it, like lenght and size - -Perche' serve Type[2] se sposto a e b a destra? *) - -inductive cmove (A:Type[0]) (f:A→A) (p:A →bool) (a,b:A): Type[0] ≝ - mk_move: p a = false → b = f a → cmove A f p a b. - -inductive cstar (A:Type[0]) (M:A→A→Type[0]) : A →A → Type[0] ≝ -| empty : ∀a. cstar A M a a -| more : ∀a,b,c. M a b → cstar A M b c → cstar A M a c. - -definition computation ≝ λsig.λM:TM sig. - cstar ? (cmove ? (step sig M) (stop sig M)). - -definition Compute_expl ≝ λsig.λM:TM sig.λf:(list sig) → (list sig). - ∀l.∃c.computation sig M (init sig M l) c → - (stop sig M c = true) ∧ out ?? c = f l. - -definition ComputeB_expl ≝ λsig.λM:TM sig.λf:(list sig) → bool. - ∀l.∃c.computation sig M (init sig M l) c → - (stop sig M c = true) ∧ (isnilb ? (out ?? c) = false). - \ No newline at end of file -- 2.39.2