From e63af7cac81040c1769855da41d0782c87701945 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Fri, 29 Oct 2010 21:15:46 +0000 Subject: [PATCH] Porting to new syntax. --- matita/matita/nlibrary/Plogic/equality.ma | 62 +++++++++++------------ 1 file changed, 31 insertions(+), 31 deletions(-) diff --git a/matita/matita/nlibrary/Plogic/equality.ma b/matita/matita/nlibrary/Plogic/equality.ma index eff29e26f..2bbd140e8 100644 --- a/matita/matita/nlibrary/Plogic/equality.ma +++ b/matita/matita/nlibrary/Plogic/equality.ma @@ -43,28 +43,28 @@ ncases p0; #Heq; nassumption. nqed. *) -ntheorem rewrite_l: ∀A:Type[2].∀x.∀P:A → Prop. P x → ∀y. x = y → P y. -#A; #x; #P; #Hx; #y; #Heq;ncases Heq;nassumption. -nqed. +theorem rewrite_l: ∀A:Type[2].∀x.∀P:A → Prop. P x → ∀y. x = y → P y. +#A; #x; #P; #Hx; #y; #Heq;cases Heq;assumption. +qed. -ntheorem sym_eq: ∀A:Type[2].∀x,y:A. x = y → y = x. -#A; #x; #y; #Heq; napply (rewrite_l A x (λz.z=x)); -##[ @; ##| nassumption; ##] -nqed. +theorem sym_eq: ∀A:Type[2].∀x,y:A. x = y → y = x. +#A; #x; #y; #Heq; apply (rewrite_l A x (λz.z=x)); +[ @ | assumption ] +qed. -ntheorem rewrite_r: ∀A:Type[2].∀x.∀P:A → Prop. P x → ∀y. y = x → P y. -#A; #x; #P; #Hx; #y; #Heq;ncases (sym_eq ? ? ?Heq);nassumption. -nqed. +theorem rewrite_r: ∀A:Type[2].∀x.∀P:A → Prop. P x → ∀y. y = x → P y. +#A; #x; #P; #Hx; #y; #Heq; cases (sym_eq ? ? ?Heq); assumption. +qed. -ntheorem eq_coerc: ∀A,B:Type[1].A→(A=B)→B. -#A; #B; #Ha; #Heq;nelim Heq; nassumption. -nqed. +theorem eq_coerc: ∀A,B:Type[1].A→(A=B)→B. +#A; #B; #Ha; #Heq;elim Heq; assumption. +qed. -ndefinition R0 ≝ λT:Type[0].λt:T.t. +definition R0 ≝ λT:Type[0].λt:T.t. -ndefinition R1 ≝ eq_rect_Type0. +definition R1 ≝ eq_rect_Type0. -ndefinition R2 : +definition R2 : ∀T0:Type[0]. ∀a0:T0. ∀T1:∀x0:T0. a0=x0 → Type[0]. @@ -77,12 +77,12 @@ ndefinition R2 : ∀e1:R1 ?? T1 a1 ? e0 = b1. T2 b0 e0 b1 e1. #T0;#a0;#T1;#a1;#T2;#a2;#b0;#e0;#b1;#e1; -napply (eq_rect_Type0 ????? e1); -napply (R1 ?? ? ?? e0); -napply a2; -nqed. +apply (eq_rect_Type0 ????? e1); +apply (R1 ?? ? ?? e0); +apply a2; +qed. -ndefinition R3 : +definition R3 : ∀T0:Type[0]. ∀a0:T0. ∀T1:∀x0:T0. a0=x0 → Type[0]. @@ -100,12 +100,12 @@ ndefinition R3 : ∀e2:R2 ???? T2 a2 b0 e0 ? e1 = b2. T3 b0 e0 b1 e1 b2 e2. #T0;#a0;#T1;#a1;#T2;#a2;#T3;#a3;#b0;#e0;#b1;#e1;#b2;#e2; -napply (eq_rect_Type0 ????? e2); -napply (R2 ?? ? ???? e0 ? e1); -napply a3; -nqed. +apply (eq_rect_Type0 ????? e2); +apply (R2 ?? ? ???? e0 ? e1); +apply a3; +qed. -ndefinition R4 : +definition R4 : ∀T0:Type[0]. ∀a0:T0. ∀T1:∀x0:T0. eq T0 a0 x0 → Type[0]. @@ -135,9 +135,9 @@ ndefinition R4 : ∀e3:eq (T3 …) (R3 T0 a0 T1 a1 T2 a2 T3 a3 b0 e0 b1 e1 b2 e2) b3. T4 b0 e0 b1 e1 b2 e2 b3 e3. #T0;#a0;#T1;#a1;#T2;#a2;#T3;#a3;#T4;#a4;#b0;#e0;#b1;#e1;#b2;#e2;#b3;#e3; -napply (eq_rect_Type0 ????? e3); -napply (R3 ????????? e0 ? e1 ? e2); -napply a4; -nqed. +apply (eq_rect_Type0 ????? e3); +apply (R3 ????????? e0 ? e1 ? e2); +apply a4; +qed. -naxiom streicherK : ∀T:Type[2].∀t:T.∀P:t = t → Type[2].P (refl ? t) → ∀p.P p. \ No newline at end of file +axiom streicherK : ∀T:Type[2].∀t:T.∀P:t = t → Type[2].P (refl ? t) → ∀p.P p. \ No newline at end of file -- 2.39.2