From eac748dd6d912e84b3c78e682f9e40d90fb10acb Mon Sep 17 00:00:00 2001 From: Ferruccio Guidi Date: Fri, 25 Nov 2011 23:08:44 +0000 Subject: [PATCH] Ground_2 ported to new syntax ... --- .../contribs/lambda_delta/Ground_2/arith.ma | 70 +++++++++---------- .../contribs/lambda_delta/Ground_2/star.ma | 52 +++++++------- .../lambda_delta/Ground_2/xoa_props.ma | 2 +- 3 files changed, 62 insertions(+), 62 deletions(-) diff --git a/matita/matita/contribs/lambda_delta/Ground_2/arith.ma b/matita/matita/contribs/lambda_delta/Ground_2/arith.ma index 5d043c140..a6ac73c12 100644 --- a/matita/matita/contribs/lambda_delta/Ground_2/arith.ma +++ b/matita/matita/contribs/lambda_delta/Ground_2/arith.ma @@ -18,7 +18,7 @@ include "Ground_2/star.ma". (* ARITHMETICAL PROPERTIES **************************************************) lemma false_lt_to_le: ∀x,y. (x < y → False) → y ≤ x. -#x #y #H elim (decidable_lt x y) [2: /2 width=1/ ] +#x #y #H elim (decidable_lt x y) /2 width=1/ #Hxy elim (H Hxy) qed-. @@ -35,50 +35,50 @@ lemma plus_S_le_to_pos: ∀n,m,p. n + S m ≤ p → 0 < p. qed. lemma minus_le: ∀m,n. m - n ≤ m. -/2/ qed. +/2 width=1/ qed. lemma le_O_to_eq_O: ∀n. n ≤ 0 → n = 0. -/2/ qed. +/2 width=1/ qed. lemma lt_to_le: ∀a,b. a < b → a ≤ b. -/2/ qed. +/2 width=2/ qed. lemma lt_refl_false: ∀n. n < n → False. -#n #H elim (lt_to_not_eq … H) -H /2/ +#n #H elim (lt_to_not_eq … H) -H /2 width=1/ qed-. lemma lt_zero_false: ∀n. n < 0 → False. -#n #H elim (lt_to_not_le … H) -H /2/ +#n #H elim (lt_to_not_le … H) -H /2 width=1/ qed-. lemma lt_or_ge: ∀m,n. m < n ∨ n ≤ m. -#m #n elim (decidable_lt m n) /3/ +#m #n elim (decidable_lt m n) /2 width=1/ /3 width=1/ qed. lemma lt_or_eq_or_gt: ∀m,n. ∨∨ m < n | n = m | n < m. #m elim m -m -[ * /2/ -| #m #IHm * [ /2/ ] +[ * /2 width=1/ +| #m #IHm * /2 width=1/ #n elim (IHm n) -IHm #H - [ @or3_intro0 | @or3_intro1 destruct | @or3_intro2 ] /2/ (**) (* /3/ is slow *) + [ @or3_intro0 | @or3_intro1 destruct | @or3_intro2 ] // /2 width=1/ (**) (* /3 width=1/ is slow *) qed. lemma le_to_lt_or_eq: ∀m,n. m ≤ n → m < n ∨ m = n. -/2/ qed. (**) (* REMOVE: this is le_to_or_lt_eq *) +/2 width=1/ qed. (**) (* REMOVE: this is le_to_or_lt_eq *) lemma plus_le_weak: ∀m,n,p. m + n ≤ p → n ≤ p. -/2/ qed. +/2 width=2/ qed. lemma plus_lt_false: ∀m,n. m + n < m → False. #m #n #H1 lapply (le_plus_n_r n m) #H2 -lapply (le_to_lt_to_lt … H2 H1) -H2 H1 #H +lapply (le_to_lt_to_lt … H2 H1) -H2 -H1 #H elim (lt_refl_false … H) qed-. lemma le_fwd_plus_plus_ge: ∀m1,m2. m2 ≤ m1 → ∀n1,n2. m1 + n1 ≤ m2 + n2 → n1 ≤ n2. -#m1 #m2 #H elim H -H m1 -[ /2/ -| #m1 #_ #IHm1 #n1 #n2 #H @IHm1 /2/ +#m1 #m2 #H elim H -m1 +[ /2 width=2/ +| #m1 #_ #IHm1 #n1 #n2 #H @IHm1 /2 width=1/ ] qed. @@ -88,10 +88,10 @@ lemma monotonic_lt_minus_l: ∀p,q,n. n ≤ q → q < p → q - n < p - n. qed. lemma plus_le_minus: ∀a,b,c. a + b ≤ c → a ≤ c - b. -/2/ qed. +/2 width=1/ qed. lemma lt_plus_minus: ∀i,u,d. u ≤ i → i < d + u → i - u < d. -/2/ qed. +/2 width=1/ qed. lemma plus_plus_comm_23: ∀m,n,p. m + n + p = m + p + n. // qed. @@ -107,7 +107,7 @@ lemma minus_le_minus_minus_comm: ∀b,c,a. c ≤ b → a - (b - c) = a + c - b. | #b #IHb #c elim c -c // #c #_ #a #Hcb lapply (le_S_S_to_le … Hcb) -Hcb #Hcb - minus_plus @eq_f2 /2/ +#a #b #c1 #H >minus_plus @eq_f2 /2 width=1/ qed. lemma arith_b2: ∀a,b,c1,c2. c1 + c2 ≤ b → a - c1 - c2 - (b - c1 - c2) = a - b. -#a #b #c1 #c2 #H >minus_plus >minus_plus >minus_plus /2/ +#a #b #c1 #c2 #H >minus_plus >minus_plus >minus_plus /2 width=1/ qed. lemma arith_c1: ∀a,b,c1. a + c1 - (b + c1) = a - b. @@ -145,25 +145,25 @@ lemma arith_c1x: ∀x,a,b,c1. x + c1 + a - (b + c1) = x + a - b. qed. lemma arith_d1: ∀a,b,c1. c1 ≤ b → a + c1 + (b - c1) = a + b. -/2/ qed. +/2 width=1/ qed. lemma arith_e2: ∀a,c1,c2. a ≤ c1 → c1 + c2 - (c1 - a + c2) = a. -/3/ qed. +/3 width=1/ qed. lemma arith_f1: ∀a,b,c1. a + b ≤ c1 → c1 - (c1 - a - b) = a + b. #a #b #c1 #H >minus_plus