From ecd41bb042961eca3138e5cdd26cbf9ab0ec99d8 Mon Sep 17 00:00:00 2001 From: Enrico Tassi Date: Sun, 18 May 2008 19:29:56 +0000 Subject: [PATCH] names fixed accoding to the new ones generated after arity of indtypes is not cleaned for dummy names --- .../dama/dama/Q_is_orded_divisble_group.ma | 18 +++++++++++------- .../contribs/dama/dama/metric_lattice.ma | 2 +- .../dama/dama/ordered_divisible_group.ma | 2 +- .../matita/contribs/dama/dama/ordered_group.ma | 2 +- .../contribs/dama/dama/premetric_lattice.ma | 3 ++- 5 files changed, 16 insertions(+), 11 deletions(-) diff --git a/helm/software/matita/contribs/dama/dama/Q_is_orded_divisble_group.ma b/helm/software/matita/contribs/dama/dama/Q_is_orded_divisble_group.ma index 762554dd0..a0b646f33 100644 --- a/helm/software/matita/contribs/dama/dama/Q_is_orded_divisble_group.ma +++ b/helm/software/matita/contribs/dama/dama/Q_is_orded_divisble_group.ma @@ -104,13 +104,17 @@ definition ordered_set_of_strong_decidable: ∀T:Type.∀le:T→T→Prop.(∀x,y:T.strong_decidable (le x y)) → transitive ? le → reflexive ? le → excess. intros; - constructor 1; - [ apply T - | apply (λx,y.¬(le x y)); - | apply reflexive_to_coreflexive; - assumption - | apply strong_decidable_to_transitive_to_cotransitive; - assumption + constructor 1; + [ constructor 1; + [ constructor 1; + [ constructor 1; + [ apply T + | apply (λx,y.¬(le x y)); + | apply reflexive_to_coreflexive; + assumption + | apply strong_decidable_to_transitive_to_cotransitive; + assumption] + no ported to duality ] qed. diff --git a/helm/software/matita/contribs/dama/dama/metric_lattice.ma b/helm/software/matita/contribs/dama/dama/metric_lattice.ma index f0242da28..010360757 100644 --- a/helm/software/matita/contribs/dama/dama/metric_lattice.ma +++ b/helm/software/matita/contribs/dama/dama/metric_lattice.ma @@ -89,7 +89,7 @@ cut ( δx y+ δy z ≈ δ(y∨x) (y∨z)+ δ(y∧x) (y∧z)); [ apply (le_rewr ??? (δx y+ δy z)); [assumption] apply le_reflexive] lapply (le_to_eqm y x Lxy) as Dxm; lapply (le_to_eqm z y Lyz) as Dym; lapply (le_to_eqj x y Lxy) as Dxj; lapply (le_to_eqj y z Lyz) as Dyj; clear Lxy Lyz; -STOP + STOP apply (Eq≈ (δ(x∧y) y + δy z) (meq_l ????? Dxm)); apply (Eq≈ (δ(x∧y) (y∧z) + δy z) (meq_r ????? Dym)); apply (Eq≈ (δ(x∧y) (y∧z) + δ(y∨x) z));[ diff --git a/helm/software/matita/contribs/dama/dama/ordered_divisible_group.ma b/helm/software/matita/contribs/dama/dama/ordered_divisible_group.ma index 15dd52cdb..a9dfc4a58 100644 --- a/helm/software/matita/contribs/dama/dama/ordered_divisible_group.ma +++ b/helm/software/matita/contribs/dama/dama/ordered_divisible_group.ma @@ -53,7 +53,7 @@ qed. lemma divide_preserves_lt: ∀G:todgroup.∀e:G.∀n.0