From f09ad987d622554030aafe383a4396c95899ec91 Mon Sep 17 00:00:00 2001
From: matitaweb <claudio.sacerdoticoen@unibo.it>
Date: Wed, 7 Mar 2012 11:50:55 +0000
Subject: [PATCH] commit by user andrea

---
 weblib/tutorial/chapter4.ma | 8 ++++----
 1 file changed, 4 insertions(+), 4 deletions(-)

diff --git a/weblib/tutorial/chapter4.ma b/weblib/tutorial/chapter4.ma
index 20762a99a..83a1c28d8 100644
--- a/weblib/tutorial/chapter4.ma
+++ b/weblib/tutorial/chapter4.ma
@@ -225,7 +225,9 @@ DeqSet is decidable in the traditional sense, namely either a=b or a≠b *)
   [%1 @(\P H) | %2 @(\Pf H)]
 qed.
 
-(* A simple example of a set with a decidable equality is bool. We first define 
+(* 
+h2 class="section"Unification Hints/h2
+A simple example of a set with a decidable equality is bool. We first define 
 the boolean equality beqb, that is just the xand function, then prove that 
 beqb b1 b2 is true if and only if b1=b2, and finally build the type DeqBool by 
 instantiating the DeqSet record with the previous information *)
@@ -241,9 +243,7 @@ qed.
 
 definition DeqBool ≝ a href="cic:/matita/tutorial/chapter4/DeqSet.con(0,1,0)"mk_DeqSet/a a href="cic:/matita/basics/bool/bool.ind(1,0,0)"bool/a a href="cic:/matita/tutorial/chapter4/beqb.def(2)"beqb/a a href="cic:/matita/tutorial/chapter4/beqb_true.def(4)"beqb_true/a.
 
-(* 
-h2 class="section"Unification Hints/h2
-At this point, we would expect to be able to prove things like the
+(* At this point, we would expect to be able to prove things like the
 following: for any boolean b, if b==false is true then b=false. 
 Unfortunately, this would not work, unless we declare b of type 
 DeqBool (change the type in the following statement and see what 
-- 
2.39.5