From f22c488fbc37c2d6c4501b78c4cf2135a8fc52d5 Mon Sep 17 00:00:00 2001 From: Claudio Sacerdoti Coen Date: Wed, 3 Jan 2007 14:49:18 +0000 Subject: [PATCH] Riesz_spaces are now seen as lattices + vector spaces + ordered abelian groups. --- matita/dama/integration_algebras.ma | 97 ++++++++++++++++++++++------- 1 file changed, 74 insertions(+), 23 deletions(-) diff --git a/matita/dama/integration_algebras.ma b/matita/dama/integration_algebras.ma index 7b65cd7fb..6d4e7c3c9 100644 --- a/matita/dama/integration_algebras.ma +++ b/matita/dama/integration_algebras.ma @@ -22,36 +22,87 @@ include "lattices.ma". record pre_riesz_space (K:ordered_field_ch0) : Type \def { rs_vector_space:> vector_space K; rs_lattice_: lattice; - rs_with: os_carrier rs_lattice_ = rs_vector_space + rs_ordered_abelian_group_: ordered_abelian_group; + rs_with1: + og_abelian_group rs_ordered_abelian_group_ = vs_abelian_group ? rs_vector_space; + rs_with2: + og_ordered_set rs_ordered_abelian_group_ = ordered_set_of_lattice rs_lattice_ }. -lemma rs_lattice: ∀K:ordered_field_ch0.pre_riesz_space K → lattice. +lemma rs_lattice: ∀K.pre_riesz_space K → lattice. intros (K V); - apply mk_lattice; - [ apply (carrier V) - | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? (rs_with ? V)); - apply l_join - | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? (rs_with ? V)); - apply l_meet - | apply - (eq_rect' ? ? - (λa:Type.λH:os_carrier (rs_lattice_ ? V)=a. - is_lattice a - (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) - (l_join (rs_lattice_ K V)) a H) - (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) - (l_meet (rs_lattice_ K V)) a H)) - ? ? (rs_with ? V)); - simplify; - apply l_lattice_properties + cut (os_carrier (rs_lattice_ ? V) = V); + [ apply mk_lattice; + [ apply (carrier V) + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); + apply l_join + | apply (eq_rect ? ? (λC:Type.C→C→C) ? ? Hcut); + apply l_meet + | apply + (eq_rect' ? ? + (λa:Type.λH:os_carrier (rs_lattice_ ? V)=a. + is_lattice a + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_join (rs_lattice_ K V)) a H) + (eq_rect Type (rs_lattice_ K V) (λC:Type.C→C→C) + (l_meet (rs_lattice_ K V)) a H)) + ? ? Hcut); + simplify; + apply l_lattice_properties + ] + | transitivity (os_carrier (rs_ordered_abelian_group_ ? V)); + [ apply (eq_f ? ? os_carrier); + symmetry; + apply rs_with2 + | apply (eq_f ? ? carrier); + apply rs_with1 + ] ]. qed. coercion cic:/matita/integration_algebras/rs_lattice.con. + +lemma rs_ordered_abelian_group: ∀K.pre_riesz_space K → ordered_abelian_group. + intros (K V); + apply mk_ordered_abelian_group; + [ apply mk_pre_ordered_abelian_group; + [ apply (vs_abelian_group ? (rs_vector_space ? V)) + | apply (ordered_set_of_lattice (rs_lattice ? V)) + | reflexivity + ] + | simplify; + generalize in match + (og_ordered_abelian_group_properties (rs_ordered_abelian_group_ ? V)); + intro P; + unfold in P; + elim daemon(* + apply + (eq_rect ? ? + (λO:ordered_set. + ∀f,g,h. + os_le O f g → + os_le O + (plus (abelian_group_OF_pre_riesz_space K V) f h) + (plus (abelian_group_OF_pre_riesz_space K V) g h)) + ? ? (rs_with2 ? V)); + apply + (eq_rect ? ? + (λG:abelian_group. + ∀f,g,h. + os_le (ordered_set_OF_pre_riesz_space K V) f g → + os_le (ordered_set_OF_pre_riesz_space K V) + (plus (abelian_group_OF_pre_riesz_space K V) f h) + (plus (abelian_group_OF_pre_riesz_space K V) g h)) + ? ? (rs_with1 ? V)); + simplify; + apply og_ordered_abelian_group_properties*) + ] +qed. + +coercion cic:/matita/integration_algebras/rs_ordered_abelian_group.con. record is_riesz_space (K:ordered_field_ch0) (V:pre_riesz_space K) : Prop ≝ - { rs_compat_le_plus: ∀f,g,h:V. f≤g → f+h≤g+h; - rs_compat_le_times: ∀a:K.∀f:V. zero K≤a → zero V≤f → zero V≤a*f + { rs_compat_le_times: ∀a:K.∀f:V. zero K≤a → zero V≤f → zero V≤a*f }. record riesz_space (K:ordered_field_ch0) : Type \def @@ -60,7 +111,7 @@ record riesz_space (K:ordered_field_ch0) : Type \def }. record is_positive_linear (K) (V:riesz_space K) (T:V→K) : Prop ≝ - { positive: ∀u:V. (0:carrier V)≤u → (0:carrier K)≤T u; + { positive: ∀u:V. 0≤u → 0≤T u; linear1: ∀u,v:V. T (u+v) = T u + T v; linear2: ∀u:V.∀k:K. T (k*u) = k*(T u) }. @@ -318,4 +369,4 @@ record integration_f_algebra (R:real) : Type \def axiom ifa_f_algebra: ∀R:real.integration_f_algebra R → f_algebra R. -coercion cic:/matita/integration_algebras/ifa_f_algebra.con. \ No newline at end of file +coercion cic:/matita/integration_algebras/ifa_f_algebra.con. -- 2.39.2