From f76bc047c47f6b3aa36b579cb762cd46b2d8f083 Mon Sep 17 00:00:00 2001 From: acondolu Date: Thu, 7 Jun 2018 16:58:59 +0200 Subject: [PATCH] Tentative definition of unlockable variable --- notes.tex | 28 +++++++++++++++++++--------- 1 file changed, 19 insertions(+), 9 deletions(-) diff --git a/notes.tex b/notes.tex index 1f3f2e5..084c9e2 100644 --- a/notes.tex +++ b/notes.tex @@ -59,6 +59,7 @@ % \item \textbf{Our subproblem:} Semi-$\sigma$-separating two (usual) $\boldsymbol\lambda$-terms % (in deep normal form) \item \textbf{Subterm:} $\SubtmOf\tm\tmtwo$ means that $\tm$ is an ($\eta/\Omega$)-subterm of $\tmtwo$. + \item \textbf{Subterm at position $\boldsymbol\pi$:} TODO \item \textbf{Distinction:} Let $\var\defeq \HeadOf D$. Let $T_{\var} \defeq \{\tm \preceq T \mid \HeadOf{\tm} = \var \}$. $C_{\var}$ is $D$--\emph{distinct} iff it is empty, or there exists path $\pi$ s.t.: \begin{itemize} @@ -68,15 +69,24 @@ \item $\{\tm\in C_\var \mid \tm \sim_\pi D\}$ is $D$--distinct. \end{itemize} - % \item \textbf{Unlockable variables.} - % We use the following contexts: - % $E ::= \Box \mid E\, t \mid t\, E \mid \Lam\var{\vec t\Comma E \Comma \vec t} $. - % A variable $\var$ is \emph{unlockable} in a context $E$ if: - % \begin{itemize} - % \item it is not bound in $E$, or - % \item $E[\cdot] = E'[\vartwo\, \vec\tm \, (\Lam{\cdots\var\cdots}{\vec\tmtwo \Comma E'[\cdot]\Comma\vec\tmthree})]$ - % and $\vartwo$ is unlockable in $E'$. - % \end{itemize} + \item $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ + $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ + $\bullet$ $\bullet$ $\bullet$ $\bullet$ $\bullet$ + + \item \textbf{Unlockable variables.} + We use the following contexts: + $E ::= \Box \mid E\, t \mid t\, E \mid \Lam\var{\vec t\Comma E \Comma \vec t} $. + A variable $\var$ is \emph{unlockable} in a context $E$ if: + \begin{itemize} + \item it is not bound in $E$, or + \item $E[\cdot] = E'[\vartwo\, \vec\tm \, (\Lam{\cdots\var\cdots}{\vec\tmtwo \Comma E'[\cdot]\Comma\vec\tmthree})]$ + and $\vartwo$ is unlockable in $E'$. + \end{itemize} + + Transformation removing an unlockable variable bound at position $\pi$: + \[\tau_{n::\pi}[\alpha] := \lambda x_1..x_n\,x.\, \alpha\,\vec x\,(\tau_\pi[x])\] + + % \textcolor{red}{For every term there exists an equivalent term with no unlockable variables} \end{itemize} -- 2.39.2