A newborn in the $\lambda \delta$ family: introducing $\lambda \delta-2 \mathrm{~B}$

Ferruccio Guidi
DISI, University of Bologna, Bologna, Italy

ferruccio.guidi@unibo.it
November 14, 2018

1. The $\lambda \delta$ family: design requirements

We designed the systems of the $\lambda \delta$ family to meet the next features:
\square predicative higher-order abstraction (de Bruijn unified binder λ);
\square telescopic explicit substitution in terms (abbreviation δ);
\square type checking reduces to validation (type cast ©);
\square valid terms are typed (infinite type sequences are possible);
\square small-step conversion (context-sensitive conversion);
\square type construction and type conversion separated in type inference.
\square infinite levels of terms (no: T or K are sorts if $\Gamma \vdash M: T: K$);
\square relaxed typing (no: Γ is valid if $\Gamma \vdash M: T$);
\square desirable invariants hold (confluence, normalization, preservation);
\square the invariants are formally specified and machine-checked.
Our systems are outside both the Automath family and the PTS family.
2. Defining $\lambda \delta$-2B (1 of 3)

Morphology \& syntax. Alphabet: () . \star \# © @ $\lambda \delta \Lambda \Delta$ [integers: $s, i]$.
Terms: $T, U, V, W:=\star s|\# i|(\lambda W) . T|(\delta V) . T|(@ V) \cdot T \mid(© U) . T$
Local environments: $L, K:=\star|K .(\Lambda W)| K .(\Delta V)$
Reduction steps \& type inference steps. The function \uparrow_{h} is a parameter.

(theta)	$L \vdash(@ V) \cdot(\delta W) \cdot T \mapsto_{\theta}(\delta W) \cdot\left(@ \Uparrow^{1} V\right) \cdot T$
(beta)	$L \vdash(@ V) \cdot(\lambda W) \cdot T \mapsto_{\beta}(\delta(\odot W) \cdot V) \cdot T$
(delta)	$K \cdot(\Delta W) \vdash \# 1 \mapsto_{\delta} \Uparrow^{1} W$
(zeta)	$L \vdash(\delta W) \cdot \Uparrow^{1} T \mapsto_{\zeta} T$
(epsilon)	$L \vdash(\bigcirc U) \cdot T \mapsto_{\epsilon} T$
(ess)	$L \vdash \star s \mapsto_{S} \star \uparrow_{h^{S}} \quad[$ applies endlessly]
(ell)	$K \cdot(\Lambda W) \vdash \# 1 \mapsto_{l} \Uparrow^{1} W$
(ee)	$L \vdash(\mathbb{O} U) \cdot T \mapsto_{e} U$

3. Defining $\lambda \delta-2 \mathrm{~B}$ ($\mathbf{2}$ of 3)

Parallel rt-transition with n t-steps. $L \vdash T_{1} \Rightarrow_{n} T_{2}$ [depends on h].

$$
\begin{aligned}
& \frac{K \vdash \# i \Rightarrow_{n} T}{L \vdash \star\left|\# i \Rightarrow_{0} \star\right| \# i} 1 R \quad \frac{K}{K .(\Lambda \mid \Delta W) \vdash \# \uparrow i \Rightarrow_{n} \Uparrow^{1} T} 1 L \\
& \frac{K \vdash W_{1} \Rightarrow_{0} W_{2} \quad K \cdot\left(\Lambda \mid \Delta W_{1}\right) \vdash T_{1} \Rightarrow_{n} T_{2}}{K \vdash\left(\lambda \mid \delta W_{1}\right) \cdot T_{1} \Rightarrow_{n}\left(\lambda \mid \delta W_{2}\right) \cdot T_{2}} 1 B \\
& \frac{L \vdash V_{1} \Rightarrow_{0} V_{2} \quad L \vdash T_{1} \Rightarrow_{n} T_{2}}{L \vdash\left(@ V_{1}\right) \cdot T_{1} \Rightarrow_{n}\left(@ V_{2}\right) \cdot T_{2}} 1 A \quad \frac{L \vdash U_{1} \Rightarrow_{n} U_{2} \quad L \vdash T_{1} \Rightarrow_{n} T_{2}}{L \vdash\left(@ U_{1}\right) \cdot T_{1} \Rightarrow_{n}\left(@ U_{2}\right) \cdot T_{2}} 1 K \\
& \frac{L \vdash V_{1} \Rightarrow_{0} V_{2}, L \vdash W_{1} \Rightarrow_{0} W_{2}, L \vdash T_{1} \Rightarrow_{n} T_{2}}{L \vdash\left(@ V_{1}\right) \cdot\left(\lambda W_{1}\right) \cdot T_{1} \Rightarrow_{n}\left(\delta\left(\odot W_{2}\right) \cdot V_{2}\right) \cdot T_{2}} 1 \beta \frac{L \vdash V_{1} \Rightarrow_{0} V_{2}, L \vdash W_{1} \Rightarrow_{0} W_{2}, L \vdash T_{1} \Rightarrow_{n} T_{2}}{L \vdash\left(@ V_{1}\right) \cdot\left(\delta W_{1}\right) \cdot T_{1} \Rightarrow_{n}\left(\delta W_{2}\right) \cdot\left(@ \Uparrow{ }^{1} V_{2}\right) \cdot T_{2}} 1 \theta \\
& \frac{K \vdash W_{1} \Rightarrow_{n} W_{2}}{K .\left(\Delta W_{1}\right) \vdash \# 1 \Rightarrow_{n} \Uparrow^{1} W_{2}} 1 \delta \quad \frac{K \vdash T_{1} \Rightarrow_{n} T_{2}}{K \vdash(\delta W) . \Uparrow^{1} T_{1} \Rightarrow_{n} T_{2}} 1 \zeta \quad \frac{K \vdash T_{1} \Rightarrow_{n} T_{2}}{K \vdash(\odot U) \cdot T_{1} \Rightarrow_{n} T_{2}} 1 \epsilon \\
& \frac{K \vdash W_{1} \Rightarrow_{n} W_{2}}{L \vdash \star s \Rightarrow_{1} \star \uparrow_{h} s} 1 s \quad \frac{K \vdash U_{1} \Rightarrow_{n} U_{2}}{K .\left(\Lambda W_{1}\right) \vdash \# 1 \Rightarrow_{\uparrow n} \Uparrow^{1} W_{2}} 1 l \quad \frac{K}{K \vdash\left(© U_{1}\right) \cdot T \Rightarrow_{\uparrow n} U_{2}} 1 e
\end{aligned}
$$

This is fully parallel and substitution is linear in a weak head transition.
Parallel rt-computation with n t-steps. $L \vdash T_{1} \Rightarrow{ }_{n}^{*} T_{2}$ [trans. closure].

$$
\frac{L \vdash T_{1} \Rightarrow_{n} T_{2}}{L \vdash T_{1} \Rightarrow_{n}^{*} T_{2}} 2 R \quad \frac{L \vdash T_{1} \Rightarrow_{n_{1}}^{*} T \quad L \vdash T \Rightarrow_{n_{2}}^{*} T_{2}}{L \vdash T_{1} \Rightarrow_{n_{1}+n_{2}}^{*} T_{2}} 2 T
$$

4. Defining $\lambda \delta-2 \mathrm{~B}$ ($\mathbf{3}$ of $\mathbf{3}$)

Extended validity (Automath-like) $L \vdash T!^{*}$ [depends on h].

$$
\begin{aligned}
& \frac{K \vdash W!^{*}}{L \vdash \star s!^{*}} 3 S \quad \frac{K \vdash(\Lambda \mid \Delta W) \vdash \# 1!^{*}}{K .\left(\Lambda!^{*}\right.} \quad \frac{K .(\Lambda \mid \Delta W) \vdash \# \uparrow i!^{*}}{} 3 L \\
& \frac{K \vdash W!^{*} \quad K .(\Lambda \mid \Delta W) \vdash T!^{*}}{K \vdash(\lambda \mid \delta W) . T!^{*}} 3 B \\
& \frac{L \vdash W!^{*} \quad L \vdash T!^{*} \quad L \vdash W \Rightarrow{ }_{0}^{*} U \quad L \vdash T \Rightarrow{ }_{1}^{*} U}{L \vdash(\mathbb{C} W) . T \text { !* }} 3 K \\
& \frac{L \vdash V!^{*} \quad L \vdash T!^{*} \quad L \vdash V \Rightarrow_{1}^{*} W \quad L \vdash T \Rightarrow_{n}^{*}(\lambda W) . U}{L \vdash(@ V) . T!^{*}} 3 A
\end{aligned}
$$

Notice that in rule $3 A$ we can choose the value of n at will (0 is OK).
Extended type $L \vdash T:^{*} U$ by def. $L \vdash(\mathbb{O} U) . T$!* * [depends on h].
Restricted validity (PTS-like) $L \vdash T$! [depends on h].
Rules 4 are like rules 3 above except for rule $4 A$ that is as follows:

$$
\frac{L \vdash V!\quad L \vdash T!\quad L \vdash V \Rightarrow_{1}^{*} W \quad L \vdash T \Rightarrow_{1}^{*}(\lambda W) \cdot U}{L \vdash(@ V) \cdot T!} 4 A
$$

Restricted type $L \vdash T: U$ by def. $L \vdash(\mathbb{C} U) . T$! [depends on h].

5. Arity assignment and strong normalization

Strong normalization holds for unbound rt-computation $L \vdash T_{1} \Rightarrow^{*} T_{2}$, which we define like $L \vdash T_{1} \Rightarrow_{n}^{*} T_{2}$ without the bound n on all its rules.
Due to rule $1 s$, we must take terms up to the next equivalence relation:

We define inductively strongly normalizing terms with the next rule:

$$
\frac{\left(\forall T_{2}\right) L \vdash T_{1} \Rightarrow T_{2} \supset\left(T_{1} \xlongequal{\star} T_{2} \supset \perp\right) \supset L \vdash \Rightarrow * \mathbf{S N}\left(T_{2}\right)}{L \vdash \Rightarrow \operatorname{SN}\left(T_{1}\right)} r t-s n
$$

Strong normalization follows from: $L \vdash T!^{*}$ implies $(\exists A) L \vdash T \vdots A$ according to the next simple type assignment with one base type \star.

$$
\begin{aligned}
& \frac{K \vdash \# i \vdots A}{L \vdash \star s \vdots \star} 6 S \frac{K \vdash W \vdots B}{K .(\Lambda \mid \Delta W) \vdash \# \uparrow i \vdots A} 6 L \frac{K \vdash(.)}{K .(\Lambda \mid \Delta W) \vdash \# 1 \vdots B} 6 U \frac{L \vdash V \vdots B, L \vdash T \vdots B \rightarrow A}{L \vdash(@ V) . T \vdots A} 6 A \\
& \frac{K \vdash W \vdots B, K .(\Lambda W) \vdash T \vdots A}{K \vdash(\lambda W) \cdot T \vdots B \rightarrow A} 6 Y \frac{K \vdash W \vdots B, K .(\Delta W) \vdash T \vdots A}{K \vdash(\delta W) \cdot T \vdots A} 6 D \frac{L \vdash W \vdots A, L \vdash T \vdots A}{L \vdash(© W) \cdot T \vdots A} 6 K
\end{aligned}
$$

Notice that we can set the expressive power of $\lambda \delta-2 \mathrm{~B}$ at the level of $\lambda \rightarrow$.

6. Transition in environment and big-tree theorem

Parallel r-transition in environment is: $\frac{}{\star \Rightarrow_{0} \star} 7 S \frac{K_{1} \Rightarrow_{0} K_{2} \quad K_{1} \vdash W_{1} \Rightarrow_{0} W_{2}}{K_{1} \cdot\left(\Lambda \mid \Delta W_{1}\right) \Rightarrow_{0} K_{2} \cdot\left(\Lambda \mid \Delta W_{2}\right)} 7 B$
Structural induction on a closure $[L, T]$ relies on $\left[L_{1}, T_{1}\right] \sqsupset\left[L_{2}, T_{2}\right]$ (s-step), whose transitive closure $\left[L_{1}, T_{1}\right] コ^{+}\left[L_{2}, T_{2}\right]$ is well founded.

$$
\begin{gathered}
\overline{[K .(\Lambda \mid \Delta W), \# 1] \sqsupset[K, W]} 8 U \quad \overline{\left[K .(\Lambda \mid \Delta W), \Uparrow^{1} T\right] \sqsupset[K, T]} 8 L \quad \overline{[L,(@ \mid \bigcirc V) . T] \sqsupset[L, T]} 8 F \\
\overline{[L,(\lambda|\delta| @ \mid \odot V) . T] \sqsupset[L, V]} 8 P \quad \overline{[L,(\lambda \mid \delta W) . T] \sqsupset[L .(\Lambda \mid \Delta W), T]} 8 B
\end{gathered}
$$

Big-tree induction on a valid closure relies on $\left[L_{1}, T_{1}\right]>\left[L_{2}, T_{2}\right]$ (rst-step), whose transitive closure $\left[L_{1}, T_{1}\right]>\left[L_{2}, T_{2}\right]$ is well founded.

$$
\frac{\left[L_{1}, T_{1}\right] \supset\left[L_{2}, T_{2}\right]}{\left[L_{1}, T_{1}\right]>\left[L_{2}, T_{2}\right]} 9 R 1 \quad \frac{L \vdash T_{1} \Rightarrow T_{2} T_{1} \doteq T_{2} \supset \perp}{\left[L, T_{1}\right]>\left[L, T_{2}\right]} 9 R 2
$$

In particular we define inductively well-founded closures with the rule:

$$
\frac{\left(\forall L_{2}, T_{2}\right)\left[L_{1}, T_{1}\right]>\left[L_{2}, T_{2}\right] \supset>\mathbf{S N}\left(L_{2}, T_{2}\right)}{>\mathbf{S N}\left(L_{1}, T_{1}\right)} r s t-s n
$$

An induction principle originates from the big-tree theorem stating that:

$$
\left.L \vdash T: A \text { (and thus } L \vdash T!^{*}\right) \text { implies }>\mathbf{S N}(L, T) .
$$

7. Confluence and preservation

With the next rules we define the building blocks for the confluence of rt-computation and the preservation of validity through rt-computation:

$$
\begin{aligned}
& \frac{L_{0} \vdash T_{0} \Rightarrow_{0} T_{1} \quad L_{0} \vdash T_{0} \Rightarrow_{0} T_{2} \quad L_{0} \Rightarrow_{0} L_{1} \quad L_{0} \Rightarrow_{0} L_{2}}{(\exists T) L_{1} \vdash T_{1} \Rightarrow_{0} T \& L_{2} \vdash T_{2} \Rightarrow_{0} T} \mathbf{D}\left(L_{0}, T_{0}\right) \\
& \frac{L_{0} \vdash T_{0} \text { !* }}{L_{0} \vdash T_{0} \Rightarrow_{n_{1}} T_{1} \quad L_{0} \vdash T_{0} \Rightarrow_{n_{2}} T_{2} \quad L_{0} \Rightarrow_{0} L_{1} \quad L_{0} \Rightarrow_{0} L_{2}} \underset{(\exists T) L_{1} \vdash T_{1} \Rightarrow_{n_{2}-n_{1}}^{*} T \& L_{2} \vdash T_{2} \Rightarrow_{n_{1}-n_{2}}^{*} T}{\mathbf{K}\left(L_{0}, T_{0}\right), ~\left(T_{0}\right)} \\
& \frac{L_{0} \vdash T_{0}!^{*}}{} L_{0} \vdash T_{0} \Rightarrow_{n_{1}}^{*} T_{1} \quad L_{0} \vdash T_{0} \Rightarrow_{n_{2}}^{*} T_{2} \quad L_{0} \Rightarrow_{0} L_{1} \quad L_{0} \Rightarrow_{0} L_{2}\left(\begin{array}{ll}
\\
(\exists T) L_{1} \vdash T_{1} \Rightarrow_{n_{2}-n_{1}}^{*} T \& L_{2} \vdash T_{2} \Rightarrow_{n_{1}-n_{2}}^{*} T \\
C
\end{array} L_{0}, T_{0}\right) \\
& \frac{L_{0} \vdash T_{0}!^{*}}{} \quad L_{0} \vdash T_{0} \Rightarrow_{n} T_{1} \quad L_{0} \Rightarrow_{0} L_{1}\left(\mathbf{P}\left(L_{0}, T_{0}\right)\right.
\end{aligned}
$$

Validity makes the pair (ϵ, e) confluent producing the kite $\mathbf{K}\left(L_{0}, T_{0}\right)$.
The rules $\mathbf{C}\left(L_{0}, T_{0}\right), \mathbf{P}\left(L_{0}, T_{0}\right)$ are mutually dependent and we have:

$$
\begin{gathered}
\frac{\left(\forall L_{0}, T_{0}\right)[L, T] コ^{+}\left[L_{0}, T_{0}\right] \supset \mathbf{D}\left(L_{0}, T_{0}\right)}{\mathbf{D}(L, T)} \operatorname{Th} 1(L, T) \\
\frac{\left(\forall L_{0}, T_{0}\right)[L, T]>\left[L_{0}, T_{0}\right] \supset \mathbf{C}\left(L_{0}, T_{0}\right) \& \mathbf{P}\left(L_{0}, T_{0}\right)}{\mathbf{K}(L, T) \& \mathbf{C}(L, T) \& \mathbf{P}(L, T)} \operatorname{Th} 2(L, T)
\end{gathered}
$$

$\mathbf{D}(L, T)$ is immediate, the big-tree induction yields $\mathbf{C}(L, T) \& \mathbf{P}(L, T)$.

8. Convertibility and derived type rules

We define contextual convertibility $L \vdash U_{1} \Leftrightarrow_{0,0}^{*} U_{2}$ with the next rules:

$$
\frac{L \vdash U_{1} \Rightarrow_{0} U_{2}}{L \vdash U_{1} \Leftrightarrow_{0,0}^{*} U_{2}} 10 R \quad \frac{L \vdash U_{2} \Rightarrow_{0} U_{1}}{L \vdash U_{1} \Leftrightarrow_{0,0}^{*} U_{2}} 10 X \quad \frac{L \vdash U_{1} \Leftrightarrow_{0,0}^{*} U \quad L \vdash U \Leftrightarrow_{0,0}^{*} U_{2}}{L \vdash U_{1} \Leftrightarrow_{0,0}^{*} U_{2}} 10 T
$$

We obtain the restricted type rules from $L \vdash T$! iff $(\exists U) L \vdash T: U$

$$
\begin{aligned}
& \frac{K \vdash V: W}{K .(\Delta V) \vdash \# 1: \Uparrow^{1} W} 11 \Delta \quad \frac{K \vdash W!}{K .(\Lambda W) \vdash \# 1: \Uparrow^{1} W} 11 \Lambda \quad \frac{K \vdash \# i: L}{K .(\Lambda \mid \Delta V) \vdash \# \uparrow i: \Uparrow^{1} U} 11 L \\
& \frac{K \vdash V!}{L \vdash \star s: \star \uparrow_{h} s} 11 S \quad \frac{K .(\Lambda \mid \Delta V) \vdash T: U}{K \vdash(\lambda \mid \delta V) . T:(\lambda \mid \delta V) . U} 11 B \quad \frac{L \vdash T: U}{L \vdash(\odot U) \cdot T: U} 11 K \\
& \frac{L \vdash V: W \quad L \vdash T:(\lambda W) . U}{L \vdash(@ V) . T:(@ V) .(\lambda W) \cdot U} 11 A \quad \frac{L \vdash T: U_{1}}{L \vdash U_{1} \Leftrightarrow_{0,0}^{*} U_{2} \quad L \vdash U_{2}!} \\
& L \vdash T: U_{2}
\end{aligned}
$$

We obtain the extended type rules from $L \vdash T!^{*}$ iff $(\exists U) L \vdash T:^{*} U$.
Rules 12 are like rules 11 above except for rule $11 A$ that is replaced by:

$$
\frac{K \vdash V:^{*} W \quad K \cdot(\Lambda W) \vdash T:^{*} U}{K \vdash(@ V) \cdot(\lambda W) \cdot T::^{*}(@ V) \cdot(\lambda W) \cdot U} 12 A 1 \quad \frac{L \vdash T:^{*} U \quad L \vdash(@ V) \cdot U!^{*}}{L \vdash(@ V) \cdot T:^{*}(@ V) \cdot U} 12 A 2
$$

As of now we can confirm the next main invariants: correctness of types, uniqueness of types up to conversion, preservation of types by reduction.

9. Comments and future work

The current specification of $\lambda \delta-2 \mathrm{~B}$ in Matita consists of the following:

Branch	Definitions	Propositions	Loss factor
Additions to the library	148	781	2.2
Structures for the $\lambda \delta$ family	122	868	4.0
Specific structures for $\lambda \delta-2 \mathrm{~B}$	41	854	4.6

We developed this specification in three years (Oct. 2015 to Nov. 2018).
W.r.t. $\lambda \delta-2 \mathrm{~A}$, the present specification stands without the next notions:

- canonical typing of a term (replaced by rt-transition with one t-step);
- degree of a term (we proved preservation w/o induction on the degree).

We are working on the remaining properties of $\lambda \delta-1 \mathrm{~A}$, esp. decidability;
on linking the ext. and rest. type systems via formal η-conversion on λ; on $\lambda \delta-2 \mathrm{~B}$ denotational semantics (first step: define what a model is).

Thank you

