
Matita V0.5.9 User Manual (rev. 0.5.9) i

Matita V0.5.9 User Manual (rev. 0.5.9)

Matita V0.5.9 User Manual (rev. 0.5.9) ii

Copyright © 2006 The HELM team.

Both Matita and this document are free software, you can redistribute them and/or modify them under the terms of the GNU
General Public License as published by the Free Software Foundation. See Chapter 10 for more information.

Matita V0.5.9 User Manual (rev. 0.5.9) iii

COLLABORATORS

TITLE :

Matita V0.5.9 User Manual (rev. 0.5.9)

ACTION NAME DATE SIGNATURE

WRITTEN BY Andrea Asperti,
Claudio Sacerdoti
Coen, Ferruccio

Guidi, Enrico Tassi,
and Stefano
Zacchiroli

December 23, 2014

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

0.5.9 12/07/2006

Matita V0.5.9 User Manual (rev. 0.5.9) iv

Contents

1 Introduction 1

1.1 Features . 1

1.2 Matita vs Coq . 1

2 Installation 3

2.1 Using the LiveCD . 3

2.1.1 Creating the virtual machine . 3

2.1.2 Sharing files with the real PC . 7

2.2 Installing from sources . 10

2.2.1 Getting the source code . 10

2.2.2 Requirements . 11

2.2.3 (optional) MySQL setup . 11

2.2.4 Compiling and installing . 12

2.3 Configuring Matita . 12

3 Getting started 15

3.1 How to type Unicode symbols . 15

3.2 Browsing and searching . 15

3.2.1 Browsing the library . 15

3.2.2 Looking at a proof under development . 16

3.2.3 Searching the library . 16

3.2.3.1 Searching by name . 16

3.2.3.2 List of lemmas that can be applied . 16

3.2.3.3 Searching by exact match . 16

3.2.3.4 List of elimination principles for a given type . 16

3.2.3.5 Searching by instantiation . 16

3.3 Authoring . 16

3.3.1 How to compile a script . 16

3.3.2 The authoring interface . 17

Matita V0.5.9 User Manual (rev. 0.5.9) v

4 Syntax 18

4.1 Terms & co. 18

4.1.1 Lexical conventions . 18

4.1.2 Terms . 21

4.2 Definitions and declarations . 21

4.2.1 axiom . 21

4.2.2 definition . 21

4.2.3 TODO . 21

4.2.4 (co)inductive types declaration . 21

4.2.5 record . 21

4.3 Proofs . 22

4.3.1 theorem . 22

4.3.2 variant . 22

4.3.3 lemma . 22

4.3.4 fact . 22

4.3.5 remark . 22

4.4 Tactic arguments . 22

4.4.1 intros-spec . 22

4.4.2 pattern . 23

4.4.3 reduction-kind . 24

4.4.4 auto-params . 24

4.4.5 justification . 24

5 Extending the syntax 26

5.1 notation . 26

5.2 interpretation . 26

6 Tacticals 30

6.1 Interactive proofs and definitions . 30

6.2 The proof status . 30

6.3 Tacticals . 31

7 Tactics 34

7.1 Quick reference card . 34

7.2 absurd . 34

7.3 apply . 34

7.4 applyS . 34

7.5 assumption . 36

7.6 auto . 36

7.7 cases . 36

Matita V0.5.9 User Manual (rev. 0.5.9) vi

7.8 clear . 37

7.9 clearbody . 37

7.10 compose . 37

7.11 change . 37

7.12 constructor . 38

7.13 contradiction . 38

7.14 cut . 38

7.15 decompose . 38

7.16 demodulate . 39

7.17 destruct . 39

7.18 elim . 39

7.19 elimType . 39

7.20 exact . 40

7.21 exists . 40

7.22 fail . 40

7.23 fold . 40

7.24 fourier . 41

7.25 fwd . 41

7.26 generalize . 41

7.27 id . 41

7.28 intro . 42

7.29 intros . 42

7.30 inversion . 42

7.31 lapply . 42

7.32 left . 43

7.33 letin . 43

7.34 normalize . 43

7.35 reflexivity . 43

7.36 change . 44

7.37 rewrite . 44

7.38 right . 44

7.39 ring . 44

7.40 simplify . 45

7.41 split . 45

7.42 subst . 45

7.43 symmetry . 45

7.44 transitivity . 46

7.45 unfold . 46

7.46 whd . 46

Matita V0.5.9 User Manual (rev. 0.5.9) vii

8 Declarative Tactics 47

8.1 Quick reference card . 47

8.2 assume . 47

8.3 by induction hypothesis we know . 48

8.4 case . 48

8.5 done . 48

8.6 let such that . 48

8.7 obtain . 48

8.8 suppose . 49

8.9 the thesis becomes . 49

8.10 we need to prove . 49

8.11 we have . 49

8.12 we proceed by cases on . 50

8.13 we proceed by induction on . 50

8.14 we proved . 50

9 Other commands 51

9.1 alias . 51

9.2 check . 51

9.3 eval . 51

9.4 prefer coercion . 52

9.5 coercion . 52

9.6 default . 52

9.7 hint . 52

9.8 include . 52

9.9 include’ "s" . 53

9.10 whelp . 53

9.11 qed . 53

9.12 inline . 54

9.12.1 inline-params . 54

10 License 56

Matita V0.5.9 User Manual (rev. 0.5.9) viii

List of Figures

2.1 The brand new virtual machine . 4

2.2 Mounting an ISO image . 5

2.3 Choosing the ISO image . 6

2.4 Choosing the ISO image . 7

2.5 Set up a shared folder . 8

2.6 Choosing the folder to share . 9

2.7 Naming the shared folder . 9

2.8 Using it from the virtual machine . 10

2.9 Configuring the Databases . 13

Matita V0.5.9 User Manual (rev. 0.5.9) ix

List of Tables

4.1 qstring . 18

4.2 id . 18

4.3 nat . 19

4.4 char . 19

4.5 uri-step . 19

4.6 uri . 19

4.7 csymbol . 19

4.8 symbol . 19

4.9 Terms . 19

4.10 Simple terms . 20

4.11 Arguments . 20

4.12 Pattern matching . 20

4.13 intros-spec . 23

4.14 pattern . 23

4.15 path . 23

4.16 reduction-kind . 24

4.17 auto-params . 24

4.18 simple-auto-param . 24

4.19 justification . 25

5.1 usage . 26

5.2 associativity . 26

5.3 notation_rhs . 27

5.4 unparsed_ast . 27

5.5 enriched_term . 27

5.6 unparsed_meta . 27

5.7 level2_meta . 27

5.8 notation_lhs . 27

5.9 layout . 28

5.10 literal . 28

Matita V0.5.9 User Manual (rev. 0.5.9) x

5.11 interpretation_argument . 29

5.12 interpretation_rhs . 29

6.1 proof script . 31

6.2 proof steps . 32

6.3 tactics and LCF tacticals . 33

7.1 tactics . 35

8.1 tactics . 47

9.1 clusters . 53

9.2 inline-params . 54

9.3 inline-param . 55

Matita V0.5.9 User Manual (rev. 0.5.9) 1 / 56

Chapter 1

Introduction

1.1 Features

Matita is an interactive theorem prover (or proof assistant) with the following characteristics:

• It is based on a variant of the Calculus of (Co)Inductive Constructions (CIC). CIC is also the logic of the Coq proof assistant.

• It adopts a procedural proof language, but it has a new set of small step tacticals that improve proof structuring and debugging.

• It has a stand-alone graphical user interface (GUI) inspired by CtCoq/Proof General. The GUI is implemented according to
the state of the art. In particular:

– It is based and fully integrated with Gtk/Gnome.

– An on-line help can be browsed via the Gnome documentation browser.

– Mathematical formulae are rendered in two dimensional notation via MathML and Unicode.

• It integrates advanced browsing and searching procedures.

• It allows the use of the typical ambiguous mathematical notation by means of a disambiguating parser.

• It is compatible with the library of Coq (definitions and proof objects).

1.2 Matita vs Coq

The system shares a common look&feel with the Coq proof assistant and its graphical user interface. The two systems have the
same logic, very close proof languages and similar sets of tactics. Moreover, Matita is compatible with the library of Coq. From
the user point of view the main lacking features with respect to Coq are:

• proof extraction;

• an extensible language of tactics;

• automatic implicit arguments;

• several ad-hoc decision procedures;

• several rarely used variants for most of the tactics;

• sections and local variables. To maintain compatibility with the library of Coq, theorems defined inside sections are abstracted
by name over the section variables; their instances are explicitly applied to actual arguments by means of explicit named
substitutions.

Matita V0.5.9 User Manual (rev. 0.5.9) 2 / 56

Still from the user point of view, the main differences with respect to Coq are:

• the language of tacticals that allows execution of partial tactical application;

• the unification of the concept of metavariable and existential variable;

• terms with subterms that cannot be inferred are always allowed as arguments of tactics or other commands;

• ambiguous terms are disambiguated by direct interaction with the user;

• theorems and definitions in the library are always accessible without needing to require/include them; right now, only notation
needs to be included to become active, but we plan to remove this limitation.

Matita V0.5.9 User Manual (rev. 0.5.9) 3 / 56

Chapter 2

Installation

Matita is a quite complex piece of software, we thus recommend you to either install al precompiled version or use the LiveCD.
If you are running Debian GNU/Linux (or one of its derivatives like Ubuntu), you can install matita typing

aptitude install matita matita-standard-library

If you are running MacOSX or Windows, give the LiveCD a try before trying to compile Matita from its sources.

2.1 Using the LiveCD

In the following, we will assume you have installed virtualbox for your platform and downloaded the .iso image of the LiveCD

2.1.1 Creating the virtual machine

Click on the New button, a wizard will popup, you should ask to its questions as follows

1. The name should be something like Matita, but can be any meaningful string.

2. The OS type should be Debian

3. The base memory size can be 256 mega bytes, but you may want to increase it if you are going to work with huge
formalizations.

4. The boot hard disk should be no hard disk. It may complain that this choice is not common, but it is right, since you will
run a LiveCD you do not need to emulate an hard drive.

Now that you are done with the creation of the virtual machine, you need to insert the LiveCD in the virtual cd reader unit.

http://www.virtualbox.org

Matita V0.5.9 User Manual (rev. 0.5.9) 4 / 56

Figure 2.1: The brand new virtual machine

Click on CD/DVD-ROM (that should display something like: Not mouted). Then click on mount CD/DVD drive and select the
ISO image option. The combo-box should display no available image, you need to add the ISO image you downloaded from the
Matita website clicking on the button near the combo-box. to start the virtual machine.

Matita V0.5.9 User Manual (rev. 0.5.9) 5 / 56

Figure 2.2: Mounting an ISO image

In the newely opened window click the Add button

Matita V0.5.9 User Manual (rev. 0.5.9) 6 / 56

Figure 2.3: Choosing the ISO image

A new windows will pop-up: choose the file you downloaded (usually matita-version.iso) and click open.

Matita V0.5.9 User Manual (rev. 0.5.9) 7 / 56

Figure 2.4: Choosing the ISO image

Now select the new entry you just added as the CD image you want to insert in the virtual CD drive. You are now ready to start
the virtual machine.

2.1.2 Sharing files with the real PC

The virtual machine Matita will run on, has its own file system, that is completely separated from the one of your real PC (thus
your files are not available in the emulated environment) and moreover it is a non-presistent file system (thus you data is lost
every time you turn off the virtual machine).

Virtualbox allows you to share a real folder (beloging to your real PC) with the emulated computer. Since this folder is persistent,
you are encouraged to put your work there, so that it is not lost when the virtual machine is powered off.

The first step to set up a shared folder is to click on the shared folder configuration entry of the virtual machine.

Matita V0.5.9 User Manual (rev. 0.5.9) 8 / 56

Figure 2.5: Set up a shared folder

Then you shuld add a shared folder clicking on the plus icon on the right

Matita V0.5.9 User Manual (rev. 0.5.9) 9 / 56

Figure 2.6: Choosing the folder to share

Then you have to specify the real PC folder you want to share and name it. A reasonable folder to share is /home on a standard
Unix system, while /Users on MaxOSX. The name you give to the share is important, you should remember it.

Figure 2.7: Naming the shared folder

Once your virtual machine is up and running, you can mount (that meand have access to) the shared folder by clicking on the
Mount VirtualBox share icon, and typing the name of the share.

Matita V0.5.9 User Manual (rev. 0.5.9) 10 / 56

Figure 2.8: Using it from the virtual machine

A window will then pop-up, and its content will be the the content of the real PC folder.

2.2 Installing from sources

Install Matita from the sources is hard, you have been warned!

2.2.1 Getting the source code

You can get the Matita source code in two ways:

1. go to the download page and get the latest released source tarball;

2. get the development sources from our SVN repository. You will need the components/ and matita/ directories from the
trunk/helm/software/ directory, plus the configure and Makefile* stuff from the same directory.

In this case you will need to run autoconf before proceding with the building instructions below.

http://matita.cs.unibo.it/download.shtml
http://matita.cs.unibo.it/sources/matita-latest.tar.gz
http://helm.cs.unibo.it/websvn/listing.php?repname=helm&path=%2F&sc=0

Matita V0.5.9 User Manual (rev. 0.5.9) 11 / 56

2.2.2 Requirements

In order to build Matita from sources you will need some tools and libraries. They are listed below.

Note for Debian (and derivatives) users
If you are running a Debian GNU/Linux distribution, or any of its derivative like Ubuntu, you can use APT to install all the
required tools and libraries since they are all part of the Debian archive.
apt-get install ocaml ocaml-findlib libgdome2-ocaml-dev liblablgtk2-ocaml-dev liblablgtkmathview-ocaml-dev
liblablgtksourceview-ocaml-dev libsqlite3-ocaml-dev libocamlnet-ocaml-dev libzip-ocaml-dev libhttp-ocaml-dev ocaml-ulex08
libexpat-ocaml-dev libmysql-ocaml-dev camlp5
An official debian package is going to be added to the archive too.

REQUIRED TOOLS AND LIBRARIES

OCaml the Objective Caml compiler, version 3.09 or above

Findlib OCaml package manager, version 1.1.1 or above

OCaml Expat OCaml bindings for the expat library

GMetaDOM OCaml bindings for the Gdome 2 library

OCaml HTTP OCaml library to write HTTP daemons (and clients)

LablGTK OCaml bindings for the GTK+ library , version 2.6.0 or above

GtkMathView , LablGtkMathView GTK+ widget to render MathML documents and its OCaml bindings

GtkSourceView , LablGtkSourceView extension for the GTK+ text widget (adding the typical features of source code edi-
tors) and its OCaml bindings

MySQL , OCaml MySQL SQL database and OCaml bindings for its client-side library

The SQL database itself is not strictly needed to run Matita, but the client libraries are.

Sqlite , OCaml Sqlite3 Sqlite database and OCaml bindings

Ocamlnet collection of OCaml libraries to deal with application-level Internet protocols and conventions

ulex Unicode lexer generator for OCaml

CamlZip OCaml library to access .gz files

2.2.3 (optional) MySQL setup

To fully exploit Matita indexing and search capabilities on a huge metadata set you may need a working MySQL database.
Detalied instructions on how to do it can be found in the MySQL documentation. Here you can find a quick howto.

In order to create a database you need administrator permissions on your MySQL installation, usually the root account has
them. Once you have the permissions, a new database can be created executing mysqladmin create matita (matita is
the default database name, you can change it using the db.user key of the configuration file).

Then you need to grant the necessary access permissions to the database user of Matita, typing echo "grant all privileges
on matita.* to helm;" | mysql matita should do the trick (helm is the default user name used by Matita to access
the database, you can change it using the db.user key of the configuration file).

Note
This way you create a database named matita on which anyone claiming to be the helm user can do everything (like adding
dummy data or destroying the contained one). It is strongly suggested to apply more fine grained permissions, how to do it is
out of the scope of this manual.

http://www.debian.org
http://ubuntu.com
http://caml.inria.fr
http://www.ocaml-programming.de/packages/
http://www.xs4all.nl/~mmzeeman/ocaml/
http://expat.sourceforge.net/
http://gmetadom.sourceforge.net/
http://gdome2.cs.unibo.it/
http://www.bononia.it/~zack/ocaml-http.en.html
http://wwwfun.kurims.kyoto-u.ac.jp/soft/lsl/lablgtk.html
http://www.gtk.org
http://helm.cs.unibo.it/mml-widget/
http://helm.cs.unibo.it/mml-widget/
http://www.w3.org/Math/
http://gtksourceview.sourceforge.net/
http://helm.cs.unibo.it/software/lablgtksourceview/
http://www.mysql.com
http://raevnos.pennmush.org/code/ocaml-mysql/
http://www.sqlite.org
http://ocaml.info/home/ocaml_sources.html
http://ocamlnet.sourceforge.net/
http://www.cduce.org/download.html
http://cristal.inria.fr/~xleroy/software.html
http://www.mysql.com
http://www.mysql.com
http://dev.mysql.com/doc/

Matita V0.5.9 User Manual (rev. 0.5.9) 12 / 56

2.2.4 Compiling and installing

Once you get the source code the installations steps should be quite familiar.

First of all you need to configure the build process executing ./configure. This will check that all needed tools and library
are installed and prepare the sources for compilation and installation.

Quite a few (optional) arguments may be passed to the configure command line to change build time parameters. They are listed
below, together with their default values:

CONFIGURE COMMAND LINE ARGUMENTS

--with-runtime-dir=dir (Default: /usr/local/matita) Runtime base directory where all Matita stuff (executa-
bles, configuration files, standard library, ...) will be installed

--with-dbhost=host (Default: localhost) Default SQL server hostname. Will be used while building the standard library
during the installation and to create the default Matita configuration. May be changed later in configuration file.

--enable-debug (Default: disabled) Enable debugging code. Not for the casual user.

Then you will manage the build and install process using make as usual. Below are reported the targets you have to invoke in
sequence to build and install:

MAKE TARGETS

world builds components needed by Matita and Matita itself (in bytecode or native code depending on the availability of the
OCaml native code compiler)

install installs Matita related tools, standard library and the needed runtime stuff in the proper places on the filesystem.

As a part of the installation process the Matita standard library will be compiled, thus testing that the just built matitac
compiler works properly.

For this step you will need a working SQL database (for indexing the standard library while you are compiling it). See
Database setup for instructions on how to set it up.

2.3 Configuring Matita

The configuration file is divided in four sections. The user and matita ones are self explicative and does not need user intervention.
Here we report a sample snippet for these two sections. The remaining db and getter sections will be explained in details later.

<section name="user">
<key name="home">$(HOME)</key>
<key name="name">$(USER)</key>

</section>
<section name="matita">
<key name="basedir">$(user.home)/.matita</key>
<key name="rt_base_dir">/usr/share/matita/</key>
<key name="owner">$(user.name)</key>

</section>

Matita needs to store/fetch data and metadata. Data is essentially composed of XML files, metadata is a set of tuples for a
relational model. Data and metadata can produced by the user or be already available. Both kind of data/metadata can be local
and/or remote.

The db section tells Matita where to store and retrieve metadata, while the getter section describes where XML files have to be
found. The following picture describes the suggested configuration. Dashed arrows are determined by the configuration file.

http://www.gnu.org/software/make/

Matita V0.5.9 User Manual (rev. 0.5.9) 13 / 56

Figure 2.9: Configuring the Databases

The getter

Consider the following snippet and the URI cic:/matita/foo/bar.con. If Matita is asked to read that object it will
resolve the object trough the getter. Since the first two entries are equally specific (longest match rule applies) first the path
file://$(matita.rt_base_dir)/xml/standard-library/foo/bar.con and then file://$(user.home)/.matita/xml/matita/foo/bar.con
are inspected.

<section name="getter">
<key name="cache_dir">$(user.home)/.matita/getter/cache</key>
<key name="prefix">

cic:/matita/
file://$(matita.rt_base_dir)/xml/standard-library/
ro

</key>
<key name="prefix">

cic:/matita/
file://$(user.home)/.matita/xml/matita/

</key>
<key name="prefix">

cic:/Coq/
http://mowgli.cs.unibo.it/xml/
legacy

Matita V0.5.9 User Manual (rev. 0.5.9) 14 / 56

</key>
</section>

if the same URI has to be written, the former prefix is skipped since it is marked as readonly (ro). Objects resolved using the
third prefix are readonly too, and are retrieved using the network. There is no limit to the number of prefixes the user can define.
The distinction between prefixes marked as readonly and legacy is that, legacy ones are really read only, while the ones marked
with ro are considered for writing when Matita is started in system mode (used to publish user developments in the library
space).

The db

The database subsystem has three fron ends: library, user and legacy. The latter is the only optional one. Every query is done on
every frontend, making the duplicate free union of the results. The user front end kepps metadata produced by the user, and is
thus heavily accessed in read/write mode, while the library and legacy fron ends are read only. Every front end can be connected
to backend, the storage actually. Consider the following snippet.

<section name="db">
<key name="metadata">mysql://mowgli.cs.unibo.it matita helm none legacy</key>
<key name="metadata">file://$(matita.rt_base_dir) metadata.db helm helm library</key>
<key name="metadata">file://$(matita.basedir) user.db helm helm user</key>

</section>

Here the usr database is a file (thus locally accessed trough the Sqlite library) placed in the user’s home directory. The library one
is placed in the Matita runtime directory. The legacy fron end is connected to a remote MySQL based storage. Every metadata
key takes a path to the storage, the name of the database, the user name, a password (or none) and the name of the front end to
which it is attached.

http://www.mysql.com

Matita V0.5.9 User Manual (rev. 0.5.9) 15 / 56

Chapter 3

Getting started

If you are already familiar with the Calculus of (Co)Inductive Constructions (CIC) and with interactive theorem provers with
procedural proof languages (expecially Coq), getting started with Matita is relatively easy. You just need to learn how to type
Unicode symbols, how to browse and search the library and how to author a proof script.

3.1 How to type Unicode symbols

Unicode characters can be typed in several ways:

• Using the "Ctrl+Shift+Unicode code" standard Gnome shortcut. E.g. Ctrl+Shift+3a9 generates "Ω".

• Typing the ligature "\name" where "name" is a standard Unicode or LaTeX name for the character or an ASCII art resembling
the shape of the character. Pressing "Alt+L" or Space or Enter just after the last character of the name converts the ligature to
the Unicode symbol. E.g. "\Delta" followed by Alt+L generates "∆", while pressing Alt-L after "=>" generates "⇒"

• Typing a symbol and rotating trough its equivalence class with Alt-L. E.g. pressing Alt-L after an "l" generates a "λ ", while
pressing Alt-L after an "→" once generates "⇒" and pressing Alt-L again generates "⇒".

The comprehensive list of symbols names or shortcuts and their equivalence classes is available clicking on the "TeX/UTF-8
table" item of the "View" menu.

There is a memory mechanism related to equivalence classes that remembers your last choice, making it the default one. For
example, if you use "_" to generate "⎻" (that is the third choice, after "⎽" and "⎼"), the next time you
type Alt-L after "_" you immediately get "⎻".

3.2 Browsing and searching

The CIC browser is used to browse and search the library. You can open a new CIC browser selecting "New Cic Browser" from
the "View" menu of Matita, or by pressing "F3". The CIC browser is similar to a traditional Web browser.

3.2.1 Browsing the library

To browse the library, type in the location bar the absolute URI of the theorem, definition or library fragment you are interested
in. "cic:/" is the root of the library. Contributions developed in Matita are under "cic:/matita"; all the others are part of the library
of Coq.

Following the hyperlinks it is possible to navigate in the Web of mathematical notions. Proof are rendered in pseudo-natural
language and mathematical notation is used for formulae. For now, mathematical notation must be included in the current script
to be activated, but we plan to remove this limitation.

Matita V0.5.9 User Manual (rev. 0.5.9) 16 / 56

3.2.2 Looking at a proof under development

A proof under development is not yet part of the library. The special URI "about:proof" can be used to browse the proof currently
under development, if there is one. The "home" button of the CIC browser sets the location bar to "about:proof".

3.2.3 Searching the library

The query bar of the CIC browser can be used to search the library of Matita for theorems or definitions that match certain
criteria. The criteria is given by typing a term in the query bar and selecting an action in the drop down menu right of it.

3.2.3.1 Searching by name

TODO

3.2.3.2 List of lemmas that can be applied

TODO

3.2.3.3 Searching by exact match

TODO

3.2.3.4 List of elimination principles for a given type

TODO

3.2.3.5 Searching by instantiation

TODO

3.3 Authoring

3.3.1 How to compile a script

Scripts are compiled to base URIs. Base URIs are of the form "cic:/matita/path" and are given once for all for a set of scripts
using the "root" file.

A "root" file has to be placed in the root of a script set, for example, consider the following files and directories, and assume you
keep files in "list" separated from files in "sort" (for example the former directory may contain functions and proofs about lists,
while latter sorting algorithms for lists):

list/
list.ma (* depending just on the standard library *)
utils/

swap.ma (* including list.ma *)
sort/
qsort.ma (* including utils/swap.ma *)

To be able to compile properly the contents of "list" a file called root has to be placed in it. The file should be like the following
snippet.

baseuri=cic:/matita/mydatastructures

Matita V0.5.9 User Manual (rev. 0.5.9) 17 / 56

This file tells Matita that objects generated by "list.ma" have to be placed in "cic:/matita/mydatastructures/list" while objects
generated by "swap.ma" have to be placed in "cic:/matita/mydatastructures/utils/swap".

Once you created the root file, you must generate a depend file. Enter the "list" directory (the root of yuor file set) and type
"matitadep". Remember to regenerate the depend file every time you alter the dependencies of your files (for example including
other scripts). You can now compile you files typing "matitac".

To compile the "sort" directory, create a root file in "sort/" like the following one and then run "matitadep".

baseuri=cic:/matita/myalgorithms
include_paths=../list

The include_paths field can declare a list of paths separated by space. Please omit any "/" from the end of base URIs or paths.

3.3.2 The authoring interface

TODO

Matita V0.5.9 User Manual (rev. 0.5.9) 18 / 56

Chapter 4

Syntax

To describe syntax in this manual we use the following conventions:

1. Non terminal symbols are emphasized and have a link to their definition. E.g.: term

2. Terminal symbols are in bold. E.g.: theorem

3. Optional sequences of elements are put in square brackets. E.g.: [in term]

4. Alternatives are put in square brakets and they are separated by vertical bars. E.g.: [<|>]

5. Repetitions of a sequence of elements are given by putting the sequence in square brackets, that are followed by three dots.
The empty sequence is a valid repetition. E.g.: [and term]. . .

6. Characters belonging to a set of characters are given by listing the set elements in square brackets. Hyphens are used to
specify ranges of characters in the set. E.g.: [a-zA-Z0-9_-]

4.1 Terms & co.

4.1.1 Lexical conventions

qstring ::= "〈〈any sequence of
characters excluded "〉〉"

Table 4.1: qstring

id ::=

〈〈any sequence of letters,
underscores or valid XML
digits prefixed by a latin
letter ([a-zA-Z]) and
post-fixed by a possible
empty sequence of
decorators ([?’`])〉〉

Table 4.2: id

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Digit
http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Digit

Matita V0.5.9 User Manual (rev. 0.5.9) 19 / 56

nat ::= 〈〈any sequence of valid
XML digits〉〉

Table 4.3: nat

char ::= [a-zA-Z0-9_-]

Table 4.4: char

uri-step ::= char[char]. . .

Table 4.5: uri-step

uri ::= [cic:/|theory:/]uri-step[/uri-
step]. . . .id[.id]. . . [#xpointer(nat/nat[/nat]. . .)]

Table 4.6: uri

csymbol ::= ’id

Table 4.7: csymbol

symbol ::= 〈〈None of the above〉〉

Table 4.8: symbol

term ::= sterm simple or delimited term
| term term application
| λargs.term λ -abstraction

| Πargs.term
dependent product meant to
define a datatype

| ∀args.term
dependent product meant to
define a proposition

| term → term
non-dependent product
(logical implication or
function space)

| let [id|(id: term)]
de f
= term

in term
local definition

| let [co]rec rec_def (co)recursive definitions
[and rec_def]. . .
in term

| . . . user provided notation

rec_def ::= id [id|_|(id[,id]. . .
:term)]. . .

[on id] [: term]
de f
= term]

Table 4.9: Terms

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Digit

Matita V0.5.9 User Manual (rev. 0.5.9) 20 / 56

sterm ::= (term)

| id[\subst[id:=term
[;id:=term]. . .]]

identifier with optional
explicit named substitution

| uri a qualified reference

| Prop the impredicative sort of
propositions

| Set the impredicate sort of
datatypes

| CProp one fixed predicative sort of
constructive propositions

| Type one predicative sort of
datatypes

| ? implicit argument
| ?n [[[_|term]. . .]] metavariable

| match term [in id] [
return term] with case analysis

[
match_branch[|match_branch]. . .
]

| (term:term) cast

| . . . user provided notation at
precedence 90

Table 4.10: Simple terms

args ::= _[: term] ignored argument
| (_[: term]) ignored argument
| id[,id]. . . [: term]
| (id[,id]. . . [: term])

args2 ::= id
| (id[,id]. . . : term)

Table 4.11: Arguments

match_branch ::= match_pattern ⇒ term
match_pattern ::= id 0-ary constructor

| (id id [id]. . .) n-ary constructor (binds the
n arguments)

| id id [id]. . . n-ary constructor (binds the
n arguments)

| _ any remaining constructor
(ignoring its arguments)

Table 4.12: Pattern matching

Matita V0.5.9 User Manual (rev. 0.5.9) 21 / 56

4.1.2 Terms

4.2 Definitions and declarations

4.2.1 axiom id: term

axiom H: P

H is declared as an axiom that states P

4.2.2 definition id[: term] [
de f
= term]

definition f: T
de f
= t

f is defined as t; T is its type. An error is raised if the type of t is not convertible to T.

T is inferred from t if omitted.

t can be omitted only if T is given. In this case Matita enters in interactive mode and f must be defined by means of tactics.

Notice that the command is equivalent to theorem f: T de f
= t.

4.2.3 letrec TODO

TODO

4.2.4 [inductive|coinductive] id [args2]. . . : term
de f
= [|] [id:term] [| id:term]. . . [with id : term

de f
= [|]

[id:term] [| id:term]. . .]. . .

inductive i x y z: S
de f
= k1:T1 | ... | kn:Tn with i’ : S’

de f
= k1’:T1’ | ... | km’:Tm’

Declares a family of two mutually inductive types i and i’ whose types are S and S’, which must be convertible to sorts.

The constructors ki of type Ti and ki’ of type Ti’ are also simultaneously declared. The declared types i and i’ may occur in the
types of the constructors, but only in strongly positive positions according to the rules of the calculus.

The whole family is parameterized over the arguments x,y,z.

If the keyword coinductive is used, the declared types are considered mutually coinductive.

Elimination principles for the record are automatically generated by Matita, if allowed by the typing rules of the calculus accord-
ing to the sort S. If generated, they are named i_ind, i_rec and i_rect according to the sort of their induction predicate.

4.2.5 record id [args2]. . . : term
de f
= {[id [:|:>] term] [;id [:|:>] term]. . . }

record id x y z: S
de f
= { f1: T1; ...; fn:Tn }

Declares a new record family id parameterized over x,y,z.

S is the type of the record and it must be convertible to a sort.

Each field fi is declared by giving its type Ti. A record without any field is admitted.

Elimination principles for the record are automatically generated by Matita, if allowed by the typing rules of the calculus accord-
ing to the sort S. If generated, they are named i_ind, i_rec and i_rect according to the sort of their induction predicate.

For each field fi a record projection fi is also automatically generated if projection is allowed by the typing rules of the calculus
according to the sort S, the type T1 and the definability of depending record projections.

If the type of a field is declared with :>, the corresponding record projection becomes an implicit coercion. This is just syntactic
sugar and it has the same effect of declaring the record projection as a coercion later on.

Matita V0.5.9 User Manual (rev. 0.5.9) 22 / 56

4.3 Proofs

4.3.1 theorem id[: term] [
de f
= term]

theorem f: P
de f
= p

Proves a new theorem f whose thesis is P.

If p is provided, it must be a proof term for P. Otherwise an interactive proof is started.

P can be omitted only if the proof is not interactive.

Proving a theorem already proved in the library is an error. To provide an alternative name and proof for the same theorem, use

variant f: P de f
= p.

A warning is raised if the name of the theorem cannot be obtained by mangling the name of the constants in its thesis.

Notice that the command is equivalent to definition f: T de f
= t.

4.3.2 variant id: term
de f
= term

variant f: T
de f
= t

Same as theorem f: T de f
= t, but it does not complain if the theorem has already been proved. To be used to give an alternative

name or proof to a theorem.

4.3.3 lemma id[: term] [
de f
= term]

lemma f: T
de f
= t

Same as theorem f: T de f
= t

4.3.4 fact id[: term] [
de f
= term]

fact f: T
de f
= t

Same as theorem f: T de f
= t

4.3.5 remark id[: term] [
de f
= term]

remark f: T
de f
= t

Same as theorem f: T de f
= t

4.4 Tactic arguments

This section documents the syntax of some recurring arguments for tactics.

4.4.1 intros-spec

The natural number is the number of new hypotheses to be introduced. The list of identifiers gives the name for the first
hypotheses.

Matita V0.5.9 User Manual (rev. 0.5.9) 23 / 56

intros-spec ::= [nat] [([id]. . .)]

Table 4.13: intros-spec

4.4.2 pattern

pattern ::= in [id[: path]]. . . [` path]] simple pattern

| in match path [in [id[:
path]]. . . [` path]] full pattern

Table 4.14: pattern

path ::=

〈〈any sterm without
occurrences of Set, Prop,
CProp, Type, id, uri and
user provided notation;
however, % is now an
additional production for
sterm〉〉

Table 4.15: path

A path locates zero or more subterms of a given term by mimicking the term structure up to:

1. Occurrences of the subterms to locate that are represented by %.

2. Subterms without any occurrence of subterms to locate that can be represented by ?.

Warning: the format for a path for a match . . . with expression is restricted to: match path with [_ ⇒ path | . . . | _ ⇒ path]
Its semantics is the following: the n-th "_ ⇒ path" branch is matched against the n-th constructor of the inductive data type. The
head λ -abstractions of path are matched against the corresponding constructor arguments.

For instance, the path ∀_,_:?.(? ? % ?)→(? ? ? %) locates at once the subterms x+y and x*y in the term
∀x,y:nat.x+y=1→0=x*y (where the notation A=B hides the term (eq T A B) for some type T).

A simple pattern extends paths to locate subterms in a whole sequent. In particular, the pattern in H: p K: q ` r locates
at once all the subterms located by the pattern r in the conclusion of the sequent and by the patterns p and q in the hypotheses H
and K of the sequent.

If no list of hypotheses is provided in a simple pattern, no subterm is selected in the hypothesis. If the ` p part of the pattern is
not provided, no subterm will be matched in the conclusion if at least one hypothesis is provided; otherwise the whole conclusion
is selected.

Finally, a full pattern is interpreted in three steps. In the first step the match T in part is ignored and a set S of subterms is
located as for the case of simple patterns. In the second step the term T is parsed and interpreted in the context of each subterm s
∈ S. In the last term for each s ∈ S the interpreted term T computed in the previous step is looked for. The final set of subterms
located by the full pattern is the set of occurrences of the interpreted T in the subterms s.

A full pattern can always be replaced by a simple pattern, often at the cost of increased verbosity or decreased readability.

Example: the pattern ` in match x+y in ∀_,_:?.(? ? % ?) locates only the first occurrence of x+y in the se-
quent x,y: nat ` ∀z,w:nat. (x+y) * (z+w) = z * (x+y) + w * (x+y). The corresponding simple pat-
tern is ` ∀_,_:?.(? ? (? % ?) ?).

Every tactic that acts on subterms of the selected sequents have a pattern argument for uniformity. To automatically generate a
simple pattern:

Matita V0.5.9 User Manual (rev. 0.5.9) 24 / 56

1. Select in the current goal the subterms to pass to the tactic by using the mouse. In order to perform a multiple selection of
subterms, hold the Ctrl key while selecting every subterm after the first one.

2. From the contextual menu select "Copy".

3. From the "Edit" or the contextual menu select "Paste as pattern"

4.4.3 reduction-kind

Reduction kinds are normalization functions that transform a term to a convertible but simpler one. Each reduction kind can be
used both as a tactic argument and as a stand-alone tactic.

reduction-kind ::= normalize Computes the βδιζ -normal
form

| simplify Computes a form supposed
to be simpler

| unfold [sterm]
δ -reduces the constant or
variable if specified, or that
in head position

| whd
Computes the
βδιζ -weak-head normal
form

Table 4.16: reduction-kind

4.4.4 auto-params

auto_params ::= [simple_auto_param]. . .
[by term [,term]. . .]

Table 4.17: auto-params

simple_auto_param ::= depth=nat Give a bound to the depth of
the search tree

| width=nat The maximal width of the
search tree

| library Search everywhere (not
only in included files)

| type

Try to close also goals of
sort Type, otherwise only
goals living in sort Prop are
attacked.

| paramodulation
Try to close the goal
performing unit-equality
paramodulation

| size=nat The maximal number of
nodes in the proof

| timeout=nat Timeout in seconds

Table 4.18: simple-auto-param

4.4.5 justification

Matita V0.5.9 User Manual (rev. 0.5.9) 25 / 56

justification ::= using term
Proof term manually
provided

| auto_params Call automation

Table 4.19: justification

Matita V0.5.9 User Manual (rev. 0.5.9) 26 / 56

Chapter 5

Extending the syntax

Introduction: TODO

5.1 notation

notation usage "presentation" associativity with precedence p for content

Synopsis: notation [usage] "notation_lhs" [associativity] with precedence nat for notation_rhs

Action: Declares a mapping between the presentation AST presentation and the content AST content. The declared presen-
tation AST fragment presentation is at precedence level p. The precedence level is used to determine where parentheses
must be inserted. In particular, the content AST fragment content is actually a pattern, since it contains placeholders (vari-
ables) for sub-ASTs. Every placeholder for a term is given an expected precedence level. Parentheses must be inserted
around sub-ASTs having a precedence level strictly smaller than the expected one.

If presentation describes a binary infix operator and if no precedence level is explicitly given for the operator arguments, an
associativity declaration can be given to automatically choose the right level for the operands. Otherwise, no associativity
can be given.

If direction is omitted, the mapping is bi-directional and is used both during parsing and pretty-printing of terms. If
direction is >, the mapping is used only during parsing; if it is <, it is used only during pretty-printing. Thus it is possible
to use simple notations to type for writing the term, and nicer ones for rendering it.

Notation arguments:
usage ::= < Only for pretty-printing

| > Only for parsing

Table 5.1: usage

associativity ::= left associative Left associative
| right associative Right associative
| non associative Non associative (default)

Table 5.2: associativity

5.2 interpretation

interpretation "description" ’symbol p1 ... pn = rhs

Matita V0.5.9 User Manual (rev. 0.5.9) 27 / 56

notation_rhs ::= unparsed_ast TODO
| unparsed_meta TODO

Table 5.3: notation_rhs

unparsed_ast ::= @{enriched_term}
A content level AST (a term
which is parsed, but not
disambiguated).

| @id
@id is just an abbreviation
for @{id}

| @csymbol
@’symbol is just an
abbreviation for
@{’symbol}

Table 5.4: unparsed_ast

enriched_term ::=

〈〈A term that may contain
occurrences of
unparsed_meta, even as
variable names in binders,
and occurrences of
csymbol〉〉

TODO

Table 5.5: enriched_term

unparsed_meta ::= ${level2_meta} TODO

| $id
$id is just an abbreviation
for ${id}

| $_ $_ is just an abbreviation
for ${_}

Table 5.6: unparsed_meta

level2_meta ::= unparsed_ast TODO
| term nat id TODO
| number id TODO
| ident id TODO
| fresh id TODO
| anonymous TODO
| id TODO

| fold [left|right] level2_meta
rec id level2_meta

TODO

| default level2_meta
level2_meta

TODO

|
if level2_meta then
level2_meta else
level2_meta

TODO

| fail TODO

Table 5.7: level2_meta

notation_lhs ::= layout [layout]. . .

Table 5.8: notation_lhs

Matita V0.5.9 User Manual (rev. 0.5.9) 28 / 56

layout ::= layout \sub layout Subscript
| layout \sup layout Superscript
| layout \below layout
| layout \above layout
| layout \over layout
| layout \atop layout
| layout \frac layout Fraction

| \infrule layout layout
layout

Inference rule (premises,
conclusion, rule name)

| \sqrt layout Square root
| \root layout \of layout Generalized root
| hbox (layout [layout]. . .) Horizontal box
| vbox (layout [layout]. . .) Vertical box
| hvbox (layout [layout]. . .) Horizontal and vertical box

| hovbox (layout [layout]. . .
) Horizontal or vertical box

| break Breakable space
| (layout [layout]. . .) Group

| id
Placeholder for a term with
no explicit precedence

| term nat id
Placeholder for a term with
explicit expected
precedence

| number id
Placeholder for a natural
number

| ident id Placeholder for an identifier
| literal Literal

| opt layout
Optional layout (it can be
omitted for parsing)

| list0 layout [sep literal] List of layouts separated by
sep (default: any blank)

| list1 layout [sep literal]
Non empty list of layouts
separated by sep (default:
any blank)

| mstyle id value (layout) Style attributes like color
#ff0000

| mpadded id value (layout) padding attributes like
width -150%

| maction (layout) [(layout)
. . .]

Alternative notations
(output only)

Table 5.9: layout

literal ::= symbol Unicode symbol
| nat Natural number (a constant)
| ’id’ New keyword for the lexer

Table 5.10: literal

Matita V0.5.9 User Manual (rev. 0.5.9) 29 / 56

Synopsis: interpretation qstring csymbol [interpretation_argument]. . . = interpretation_rhs

Action: It declares a bi-directional mapping {. . . } between the content-level AST ’symbol t1 . . . tn and the semantic term
rhs[{t1}/p1;. . . ;{tn}/pn] (the simultaneous substitution in rhs of the interpretation {. . . } of every content-level actual argu-
ment ti for its corresponding formal parameter pi). The description must be a textual description of the meaning associated
to ’symbol by this interpretation, and is used by the user interface of Matita to provide feedback on the interpretation of
ambiguous terms.

Interpretation arguments:

interpretation_argument ::= [η .]. . . id

A formal parameter. If the
name of the formal
parameter is prefixed by n
symbols "η", then the
mapping performs
(multiple) η-expansions to
grant that the semantic
actual parameter begins
with at least n
λ -abstractions.

Table 5.11: interpretation_argument

interpretation_rhs ::= uri
A constant, specified by its
URI

| id

A constant, specified by its
name, or a bound variable.
If the constant name is
ambiguous, the one
corresponding to the last
implicitly or explicitly
specified alias is used.

| ? An implicit parameter

| (interpretation_rhs
[interpretation_rhs]. . .) An application

Table 5.12: interpretation_rhs

Matita V0.5.9 User Manual (rev. 0.5.9) 30 / 56

Chapter 6

Tacticals

6.1 Interactive proofs and definitions

An interactive definition is started by giving a definition command omitting the definiens. An interactive proof is started by using
one of the proof commands omitting an explicit proof term.

An interactive proof or definition can and must be terminated by a qed command when no more sequents are left to prove.
Between the command that starts the interactive session and the qed command the user must provide a procedural proof script
made of tactics structured by means of tacticals.

In the tradition of the LCF system, tacticals can be considered higher order tactics. Their syntax is structured and they are
executed atomically. On the contrary, in Matita the syntax of several tacticals is destructured into a sequence of tokens and tactics
in such a way that is is possible to stop execution after every single token or tactic. The original semantics is preserved: the
execution of the whole sequence yields the result expected by the original LCF-like tactical.

6.2 The proof status

During an interactive proof, the proof status is made of the set of sequents to prove and the partial proof built so far.

The partial proof can be inspected on demand in the CIC browser. It will be shown in pseudo-natural language produced on the
fly from the proof term.

The set of sequents to prove is shown in the notebook of the authoring interface, in the top-right corner of the main window of
Matita. Each tab shows a different sequent, named with a question mark followed by a number. The current role of the sequent,
according to the following description, is also shown in the tab tag.

1. Selected sequents (name in boldface, e.g. ?3). The next tactic will be applied to every selected sequent, producing new
selected sequents. Tacticals such as branching ("[") or "focus" can be used to change the set of selected sequents.

2. Sibling sequents (name prefixed by a vertical bar and their position, e.g. |3?2). When the set of selected sequents has more
than one element, the user can decide to focus in turn on each of them. The branching tactical ("[") selects the first sequent
only, marking every previously selected sequent as a sibling sequent. Each sibling sequent is given a different position.
The tactical "2,3:" can be used to select one or more sibling sequents, different from the one proposed, according to their
position. Once the user starts to work on the selected sibling sequents it becomes impossible to select a new set of siblings
until the ("|") tactical is used to end work on the current one.

3. Automatically solved sibling sequents (name strokethrough, e.g. |3?2). Sometimes a tactic can close by side effects a
sibling sequent the user has not selected yet. The sequent is left in the automatically solved status in order for the user to
explicitly accept (using the "skip" tactical) the automatic instantiation in the proof script. This way the correspondence
between the number of branches in the proof script and the number of sequents generated in the proof is preserved.

Matita V0.5.9 User Manual (rev. 0.5.9) 31 / 56

6.3 Tacticals

proof-script ::= proof-step [proof-step]. . .

Table 6.1: proof script

Every proof step can be immediately executed.

Matita V0.5.9 User Manual (rev. 0.5.9) 32 / 56

proof-step ::= LCF-tactical

The tactical is applied to
each selected sequent. Each
new sequent becomes a
selected sequent.

| .

The first selected sequent
becomes the only one
selected. All the remaining
previously selected sequents
are proposed to the user one
at a time when the next "."
is used.

| ;
Nothing changes. Use this
proof step as a separator in
concrete syntax.

| [

Every selected sequent
becomes a sibling sequent
that constitute a branch in
the proof. Moreover, the
first sequent is also selected.

| |

Stop working on the current
branch of the innermost
branching proof. The
sibling branches become the
sibling sequents and the
first one is also selected.

| nat[,nat]. . . :

The sibling sequents
specified by the user
become the next selected
sequents.

| *:

Every sibling branch not
considered yet in the
innermost branching proof
becomes a selected sequent.

| skip

Accept the automatically
provided instantiation (not
shown to the user) for the
currently selected
automatically closed sibling
sequent.

|]

Stop analyzing branches for
the innermost branching
proof. Every sequent
opened during the
branching proof and not
closed yet becomes a
selected sequent.

| focus nat [nat]. . .

Selects the sequents
specified by the user. The
selected sequents must be
completely closed (no new
sequents left open) before
doing an "unfocus that
restores the current set of
sibling branches.

| unfocus

Used to match the
innermost "focus" tactical
when all the sequents
selected by it have been
closed. Until "unfocus" is
performed, it is not possible
to progress in the rest of the
proof.

Table 6.2: proof steps

Matita V0.5.9 User Manual (rev. 0.5.9) 33 / 56

LCF-tactical ::= tactic Applies the specified tactic.

| LCF-tactical ; LCF-tactical

Applies the first tactical first
and the second tactical to
each sequent opened by the
first one.

|
LCF-tactical [
[LCF-tactical] [|
LCF-tactical]. . .]

Applies the first tactical first
and each tactical in the list
of tacticals to the
corresponding sequent
opened by the first one. The
number of tacticals
provided in the list must be
equal to the number of
sequents opened by the first
tactical.

| do nat LCF-tactical TODO
| repeat LCF-tactical TODO

| first [[LCF-tactical] [|
LCF-tactical]. . .] TODO

| try LCF-tactical TODO

| solve [[LCF-tactical] [|
LCF-tactical]. . .] TODO

| (LCF-tactical) Used for grouping during
parsing.

Table 6.3: tactics and LCF tacticals

Matita V0.5.9 User Manual (rev. 0.5.9) 34 / 56

Chapter 7

Tactics

7.1 Quick reference card

7.2 absurd

absurd P

Synopsis: absurd sterm

Pre-conditions: P must have type Prop.

Action: It closes the current sequent by eliminating an absurd term.

New sequents to prove: It opens two new sequents of conclusion P and ¬P.

7.3 apply

apply t

Synopsis: apply sterm

Pre-conditions: t must have type T1 → . . . → Tn → G where G can be unified with the conclusion of the current sequent.

Action: It closes the current sequent by applying t to n implicit arguments (that become new sequents).

New sequents to prove: It opens a new sequent for each premise Ti that is not instantiated by unification. Ti is the conclusion
of the i-th new sequent to prove.

7.4 applyS

applyS t auto_params

Synopsis: applyS sterm auto_params

Pre-conditions: t must have type T1 → ... → Tn → G.

Matita V0.5.9 User Manual (rev. 0.5.9) 35 / 56

tactic ::= absurd sterm
| apply sterm
| applyS sterm auto_params
| assumption

| auto auto_params. autobatch
auto_params

| cases term pattern [([id]. . .)]
| change pattern with sterm
| clear id [id. . .]
| clearbody id

| compose [nat] sterm [with sterm]
[intros-spec]

| constructor nat
| contradiction
| cut sterm [as id]
| decompose [as id. . .]
| demodulate auto_params
| destruct sterm

| elim sterm pattern [using sterm]
intros-spec

| elimType sterm [using sterm]
intros-spec

| exact sterm
| exists
| fail
| fold reduction-kind sterm pattern
| fourier
| fwd id [as id [id]. . .]
| generalize pattern [as id]
| id
| intro [id]
| intros intros-spec
| inversion sterm

| lapply [linear] [depth=nat] sterm [to
sterm [,sterm. . .]] [as id]

| left
| letin id

de f
= sterm

| normalize pattern
| reflexivity
| replace pattern with sterm
| rewrite [<|>] sterm pattern
| right
| ring
| simplify pattern
| split
| subst
| symmetry
| transitivity sterm
| unfold [sterm] pattern
| whd pattern

Table 7.1: tactics

Matita V0.5.9 User Manual (rev. 0.5.9) 36 / 56

Action: applyS is useful when apply fails because the current goal and the conclusion of the applied theorems are extensionally
equivalent up to instantiation of metavariables, but cannot be unified. E.g. the goal is P(n*O+m) and the theorem to be
applied proves ∀m.P(m+O).
It tries to automatically rewrite the current goal using auto paramodulation to make it unifiable with G. Then it closes
the current sequent by applying t to n implicit arguments (that become new sequents). The auto_params parameters are
passed directly to auto paramodulation.

New sequents to prove: It opens a new sequent for each premise Ti that is not instantiated by unification. Ti is the conclusion
of the i-th new sequent to prove.

7.5 assumption

assumption

Synopsis: assumption

Pre-conditions: There must exist an hypothesis whose type can be unified with the conclusion of the current sequent.

Action: It closes the current sequent exploiting an hypothesis.

New sequents to prove: None

7.6 auto

auto params

Synopsis: auto auto_params.

autobatch auto_params

Pre-conditions: None, but the tactic may fail finding a proof if every proof is in the search space that is pruned away. Pruning is
controlled by the optional params. Moreover, only lemmas whose type signature is a subset of the signature of the current
sequent are considered. The signature of a sequent is essentially the set of constats appearing in it.

Action: It closes the current sequent by repeated application of rewriting steps (unless paramodulation is omitted), hypothesis
and lemmas in the library.

New sequents to prove: None

7.7 cases

cases t pattern hyps

Synopsis: cases term pattern [([id]. . .)]

Pre-conditions: t must inhabit an inductive type

Action: It proceed by cases on t. The new generated hypothesis in each branch are named according to hyps. The elimintation
predicate is restricted by pattern. In particular, if some hypothesis is listed in pattern, the hypothesis is generalized and
cleared before proceeding by cases on t. Currently, we only support patterns of the form H1 . . . Hn ` %. This limitation
will be lifted in the future.

New sequents to prove: One new sequent for each constructor of the type of t. Each sequent has a new hypothesis for each
argument of the constructor.

Matita V0.5.9 User Manual (rev. 0.5.9) 37 / 56

7.8 clear

clear H1 ... Hm

Synopsis: clear id [id. . .]

Pre-conditions: H1 ... Hm must be hypotheses of the current sequent to prove.

Action: It hides the hypotheses H1 ... Hm from the current sequent.

New sequents to prove: None

7.9 clearbody

clearbody H

Synopsis: clearbody id

Pre-conditions: H must be an hypothesis of the current sequent to prove.

Action: It hides the definiens of a definition in the current sequent context. Thus the definition becomes an hypothesis.

New sequents to prove: None.

7.10 compose

compose n t1 with t2 hyps

Synopsis: compose [nat] sterm [with sterm] [intros-spec]

Pre-conditions:

Action: Composes t1 with t2 in every possible way n times introducing generated terms as if intros hyps was issued.

If t1:∀x:A.B[x] and t2:∀x,y:A.B[x]→B[y]→C[x,y] it generates:

• λx,y:A.t2 x y (t1 x) : ∀x,y:A.B[y]→C[x,y]
• λx,y:A.λH:B[x].t2 x y H (t1 y) : ∀x,y:A.B[x]→C[x,y]

If t2 is omitted it composes t1 with every hypothesis that can be introduced. n iterates the process.

New sequents to prove: The same, but with more hypothesis eventually introduced by the intros-spec.

7.11 change

change patt with t

Synopsis: change pattern with sterm

Pre-conditions: Each subterm matched by the pattern must be convertible with the term t disambiguated in the context of the
matched subterm.

Action: It replaces the subterms of the current sequent matched by patt with the new term t. For each subterm matched by the
pattern, t is disambiguated in the context of the subterm.

New sequents to prove: None.

Matita V0.5.9 User Manual (rev. 0.5.9) 38 / 56

7.12 constructor

constructor n

Synopsis: constructor nat

Pre-conditions: The conclusion of the current sequent must be an inductive type or the application of an inductive type with at
least n constructors.

Action: It applies the n-th constructor of the inductive type of the conclusion of the current sequent.

New sequents to prove: It opens a new sequent for each premise of the constructor that can not be inferred by unification. For
more details, see the apply tactic.

7.13 contradiction

contradiction

Synopsis: contradiction

Pre-conditions: There must be in the current context an hypothesis of type False.

Action: It closes the current sequent by applying an hypothesis of type False.

New sequents to prove: None

7.14 cut

cut P as H

Synopsis: cut sterm [as id]

Pre-conditions: P must have type Prop.

Action: It closes the current sequent.

New sequents to prove: It opens two new sequents. The first one has an extra hypothesis H:P. If H is omitted, the name of the
hypothesis is automatically generated. The second sequent has conclusion P and hypotheses the hypotheses of the current
sequent to prove.

7.15 decompose

decompose as H1 ... Hm

Synopsis: decompose [as id. . .]

Pre-conditions: None.

Action: For each each premise H of type T in the current context where T is a non-recursive inductive type without right
parameters and of sort Prop or CProp, the tactic runs elim H as H1 ... Hm , clears H and runs itself recursively on each
new premise introduced by elim in the opened sequents.

New sequents to prove: The ones generated by all the elim tactics run.

Matita V0.5.9 User Manual (rev. 0.5.9) 39 / 56

7.16 demodulate

demodulate auto_params

Synopsis: demodulate auto_params

Pre-conditions: None.

Action: TODO

New sequents to prove: None.

7.17 destruct

destruct p

Synopsis: destruct sterm

Pre-conditions: p must have type E1 = E2 where the two sides of the equality are possibly applied constructors of an inductive
type.

Action: The tactic recursively compare the two sides of the equality looking for different constructors in corresponding position.
If two of them are found, the tactic closes the current sequent by proving the absurdity of p. Otherwise it adds a new
hypothesis for each leaf of the formula that states the equality of the subformulae in the corresponding positions on the
two sides of the equality.

New sequents to prove: None.

7.18 elim

elim t pattern using th hyps

Synopsis: elim sterm pattern [using sterm] intros-spec

Pre-conditions: t must inhabit an inductive type and th must be an elimination principle for that inductive type. If th is omitted
the appropriate standard elimination principle is chosen.

Action: It proceeds by cases on the values of t, according to the elimination principle th. The induction predicate is restricted by
pattern. In particular, if some hypothesis is listed in pattern, the hypothesis is generalized and cleared before eliminating
t

New sequents to prove: It opens one new sequent for each case. The names of the new hypotheses are picked by hyps, if
provided. If hyps specifies also a number of hypotheses that is less than the number of new hypotheses for a new sequent,
then the exceeding hypothesis will be kept as implications in the conclusion of the sequent.

7.19 elimType

elimType T using th hyps

Synopsis: elimType sterm [using sterm] intros-spec

Pre-conditions: T must be an inductive type.

Action: TODO (severely bugged now).

New sequents to prove: TODO

Matita V0.5.9 User Manual (rev. 0.5.9) 40 / 56

7.20 exact

exact p

Synopsis: exact sterm

Pre-conditions: The type of p must be convertible with the conclusion of the current sequent.

Action: It closes the current sequent using p.

New sequents to prove: None.

7.21 exists

exists

Synopsis: exists

Pre-conditions: The conclusion of the current sequent must be an inductive type or the application of an inductive type with at
least one constructor.

Action: Equivalent to constructor 1.

New sequents to prove: It opens a new sequent for each premise of the first constructor of the inductive type that is the conclu-
sion of the current sequent. For more details, see the constructor tactic.

7.22 fail

fail

Synopsis: fail

Pre-conditions: None.

Action: This tactic always fail.

New sequents to prove: N.A.

7.23 fold

fold red t patt

Synopsis: fold reduction-kind sterm pattern

Pre-conditions: The pattern must not specify the wanted term.

Action: First of all it locates all the subterms matched by patt. In the context of each matched subterm it disambiguates the term
t and reduces it to its red normal form; then it replaces with t every occurrence of the normal form in the matched subterm.

New sequents to prove: None.

Matita V0.5.9 User Manual (rev. 0.5.9) 41 / 56

7.24 fourier

fourier

Synopsis: fourier

Pre-conditions: The conclusion of the current sequent must be a linear inequation over real numbers taken from standard library
of Coq. Moreover the inequations in the hypotheses must imply the inequation in the conclusion of the current sequent.

Action: It closes the current sequent by applying the Fourier method.

New sequents to prove: None.

7.25 fwd

fwd H as H0 ... Hn

Synopsis: fwd id [as id [id]. . .]

Pre-conditions: The type of H must be the premise of a forward simplification theorem.

Action: This tactic is under development. It simplifies the current context by removing H using the following methods: forward
application (by lapply) of a suitable simplification theorem, chosen automatically, of which the type of H is a premise,
decomposition (by decompose), rewriting (by rewrite). H0 ... Hn are passed to the tactics fwd invokes, as names for the
premise they introduce.

New sequents to prove: The ones opened by the tactics fwd invokes.

7.26 generalize

generalize patt as H

Synopsis: generalize pattern [as id]

Pre-conditions: All the terms matched by patt must be convertible and close in the context of the current sequent.

Action: It closes the current sequent by applying a stronger lemma that is proved using the new generated sequent.

New sequents to prove: It opens a new sequent where the current sequent conclusion G is generalized to ∀x.G{x/t} where {x/t}
is a notation for the replacement with x of all the occurrences of the term t matched by patt. If patt matches no subterm
then t is defined as the wanted part of the pattern.

7.27 id

id

Synopsis: id

Pre-conditions: None.

Action: This identity tactic does nothing without failing.

New sequents to prove: None.

Matita V0.5.9 User Manual (rev. 0.5.9) 42 / 56

7.28 intro

intro H

Synopsis: intro [id]

Pre-conditions: The conclusion of the sequent to prove must be an implication or a universal quantification.

Action: It applies the right introduction rule for implication, closing the current sequent.

New sequents to prove: It opens a new sequent to prove adding to the hypothesis the antecedent of the implication and setting
the conclusion to the consequent of the implicaiton. The name of the new hypothesis is H if provided; otherwise it is
automatically generated.

7.29 intros

intros hyps

Synopsis: intros intros-spec

Pre-conditions: If hyps specifies a number of hypotheses to introduce, then the conclusion of the current sequent must be
formed by at least that number of imbricated implications or universal quantifications.

Action: It applies several times the right introduction rule for implication, closing the current sequent.

New sequents to prove: It opens a new sequent to prove adding a number of new hypotheses equal to the number of new
hypotheses requested. If the user does not request a precise number of new hypotheses, it adds as many hypotheses as
possible. The name of each new hypothesis is either popped from the user provided list of names, or it is automatically
generated when the list is (or becomes) empty.

7.30 inversion

inversion t

Synopsis: inversion sterm

Pre-conditions: The type of the term t must be an inductive type or the application of an inductive type.

Action: It proceeds by cases on t paying attention to the constraints imposed by the actual "right arguments" of the inductive
type.

New sequents to prove: It opens one new sequent to prove for each case in the definition of the type of t. With respect to a
simple elimination, each new sequent has additional hypotheses that states the equalities of the "right parameters" of the
inductive type with terms originally present in the sequent to prove.

7.31 lapply

lapply linear depth=d t to t1, ..., tn as H

Synopsis: lapply [linear] [depth=nat] sterm [to sterm [,sterm. . .]] [as id]

Pre-conditions: t must have at least d independent premises and n must not be greater than d.

Action: Invokes letin H de f
= (t ? ... ?) with enough ?’s to reach the d-th independent premise of t (d is maximum if unspecified).

Then istantiates (by apply) with t1, ..., tn the ?’s corresponding to the first n independent premises of t. Usually the other
?’s preceding the n-th independent premise of t are istantiated as a consequence. If the linear flag is specified and if t, t1,
..., tn are (applications of) premises in the current context, they are cleared.

New sequents to prove: The ones opened by the tactics lapply invokes.

Matita V0.5.9 User Manual (rev. 0.5.9) 43 / 56

7.32 left

left

Synopsis: left

Pre-conditions: The conclusion of the current sequent must be an inductive type or the application of an inductive type with at
least one constructor.

Action: Equivalent to constructor 1.

New sequents to prove: It opens a new sequent for each premise of the first constructor of the inductive type that is the conclu-
sion of the current sequent. For more details, see the constructor tactic.

7.33 letin

letin x
de f
= t

Synopsis: letin id
de f
= sterm

Pre-conditions: None.

Action: It adds to the context of the current sequent to prove a new definition x de f
= t.

New sequents to prove: None.

7.34 normalize

normalize patt

Synopsis: normalize pattern

Pre-conditions: None.

Action: It replaces all the terms matched by patt with their βδιζ -normal form.

New sequents to prove: None.

7.35 reflexivity

reflexivity

Synopsis: reflexivity

Pre-conditions: The conclusion of the current sequent must be t=t for some term t

Action: It closes the current sequent by reflexivity of equality.

New sequents to prove: None.

Matita V0.5.9 User Manual (rev. 0.5.9) 44 / 56

7.36 replace

change patt with t

Synopsis: replace pattern with sterm

Pre-conditions: None.

Action: It replaces the subterms of the current sequent matched by patt with the new term t. For each subterm matched by the
pattern, t is disambiguated in the context of the subterm.

New sequents to prove: For each matched term t’ it opens a new sequent to prove whose conclusion is t’=t.

7.37 rewrite

rewrite dir p patt

Synopsis: rewrite [<|>] sterm pattern

Pre-conditions: p must be the proof of an equality, possibly under some hypotheses.

Action: It looks in every term matched by patt for all the occurrences of the left hand side of the equality that p proves (resp.
the right hand side if dir is <). Every occurence found is replaced with the opposite side of the equality.

New sequents to prove: It opens one new sequent for each hypothesis of the equality proved by p that is not closed by unifica-
tion.

7.38 right

right

Synopsis: right

Pre-conditions: The conclusion of the current sequent must be an inductive type or the application of an inductive type with at
least two constructors.

Action: Equivalent to constructor 2.

New sequents to prove: It opens a new sequent for each premise of the second constructor of the inductive type that is the
conclusion of the current sequent. For more details, see the constructor tactic.

7.39 ring

ring

Synopsis: ring

Pre-conditions: The conclusion of the current sequent must be an equality over Coq’s real numbers that can be proved using
the ring properties of the real numbers only.

Action: It closes the current sequent veryfying the equality by means of computation (i.e. this is a reflexive tactic, implemented
exploiting the "two level reasoning" technique).

New sequents to prove: None.

Matita V0.5.9 User Manual (rev. 0.5.9) 45 / 56

7.40 simplify

simplify patt

Synopsis: simplify pattern

Pre-conditions: None.

Action: It replaces all the terms matched by patt with other convertible terms that are supposed to be simpler.

New sequents to prove: None.

7.41 split

split

Synopsis: split

Pre-conditions: The conclusion of the current sequent must be an inductive type or the application of an inductive type with at
least one constructor.

Action: Equivalent to constructor 1.

New sequents to prove: It opens a new sequent for each premise of the first constructor of the inductive type that is the conclu-
sion of the current sequent. For more details, see the constructor tactic.

7.42 subst

subst

Synopsis: subst

Pre-conditions: None.

Action: For each premise of the form H: x = t or H: t = x where x is a local variable and t does not depend on x, the tactic
rewrites H wherever x appears clearing H and x afterwards.

New sequents to prove: The one opened by the applied tactics.

7.43 symmetry

The tactic symmetry

symmetry

Synopsis: symmetry

Pre-conditions: The conclusion of the current proof must be an equality.

Action: It swaps the two sides of the equalityusing the symmetric property.

New sequents to prove: None.

Matita V0.5.9 User Manual (rev. 0.5.9) 46 / 56

7.44 transitivity

transitivity t

Synopsis: transitivity sterm

Pre-conditions: The conclusion of the current proof must be an equality.

Action: It closes the current sequent by transitivity of the equality.

New sequents to prove: It opens two new sequents l=t and t=r where l and r are the left and right hand side of the equality in
the conclusion of the current sequent to prove.

7.45 unfold

unfold t patt

Synopsis: unfold [sterm] pattern

Pre-conditions: None.

Action: It finds all the occurrences of t (possibly applied to arguments) in the subterms matched by patt. Then it δ -expands
each occurrence, also performing β -reduction of the obtained term. If t is omitted it defaults to each subterm matched by
patt.

New sequents to prove: None.

7.46 whd

whd patt

Synopsis: whd pattern

Pre-conditions: None.

Action: It replaces all the terms matched by patt with their βδιζ -weak-head normal form.

New sequents to prove: None.

Matita V0.5.9 User Manual (rev. 0.5.9) 47 / 56

Chapter 8

Declarative Tactics

8.1 Quick reference card

tactic ::= assume id : sterm

| by induction hypothesis we know term
(id)

| case id [(id : term)] . . .
| justification done

| justification let id : term such that
term (id)

|
[obtain id | conclude term] = term
[auto_params | using term | using
once term | proof] [done]

| suppose term (id) [that is
equivalent to term]

| the thesis becomes term

| we need to prove term [(id)] [or
equivalently term]

| we proceed by cases on term to prove
term

| we proceed by induction on term to
prove term

| justification we proved term (id)

Table 8.1: tactics

8.2 assume

assume x : t

Synopsis: assume id : sterm

Pre-conditions: The conclusion of the current proof must be ∀x:T.P or T→P where T is a data type (i.e. T has type Set or
Type).

Action: It adds to the context of the current sequent to prove a new declaration x : T . The new conclusion becomes P.

New sequents to prove: None.

Matita V0.5.9 User Manual (rev. 0.5.9) 48 / 56

8.3 by induction hypothesis we know

by induction hypothesis we know t (id)

Synopsis: by induction hypothesis we know term (id)

Pre-condition: To be used in a proof by induction to state the inductive hypothesis.

Action: Introduces the inductive hypothesis.

New sequents to prove: None.

8.4 case

case id (id1:t1) ... (idn:tn)

Synopsis: case id [(id : term)] . . .

Pre-condition: To be used in a proof by induction or by cases to start a new case

Action: Starts the new case id declaring the local parameters (id1:t1) . . . (idn:tn)

New sequents to prove: None

8.5 done

justification done

Synopsis: justification done

Pre-condition:

Action: It closes the current sequent given the justification.

New sequents to prove: None.

8.6 let such that

justification let x:t such that p (id)

Synopsis: justification let id : term such that term (id)

Pre-condition:

Action: It derives ∃x:t.p using the justification and then it introduces in the context x and the hypothesis p labelled with id.

New sequent to prove: None.

8.7 obtain

obtain H t1 = t2 justification

Synopsis: [obtain id | conclude term] = term [auto_params | using term | using once term | proof] [done]

Pre-condition: conclude can be used only if the current sequent is stating an equality. The left hand side must be omitted in an
equality chain.

Action: Starts or continues an equality chain. If the chain starts with obtain H a new subproof named H is started.

New sequent to prove: If the chain starts with obtain H a nre sequent for t2 = ? is opened.

Matita V0.5.9 User Manual (rev. 0.5.9) 49 / 56

8.8 suppose

suppose t1 (x) that is equivalent to t2

Synopsis: suppose term (id) [that is equivalent to term]

Pre-condition: The conclusion of the current proof must be ∀x:T.P or T→P where T is a proposition (i.e. T has type Prop or
CProp).

Action: It adds to the context of the current sequent to prove a new declaration x : T . The new conclusion becomes P.

New sequents to prove: None.

8.9 the thesis becomes

the thesis becomes t

Synopsis: the thesis becomes term

Pre-condition: The provided term t must be convertible with current sequent.

Action: It changes the current goal to the one provided.

New sequent to prove: None.

8.10 we need to prove

we need to prove t1 (id) or equivalently t2

Synopsis: we need to prove term [(id)] [or equivalently term]

Pre-condition:

Action: If id is provided, starts a subproof that once concluded will be named id. Otherwise states what needs to be proved. If
t2 is provided, the new goal is immediately changed to t2 wich must be equivalent to t1.

New sequents to prove: The stated one if id is provided

8.11 we have

justification we have t1 (id1) and t2 (id2)

Synopsis: justification we have term (id) and term (id)

Pre-condition:

Action: It derives t1∧t2 using the justification then it introduces in the context t1 labelled with id1 and t2 labelled with id2.

New sequent to prove: None.

Matita V0.5.9 User Manual (rev. 0.5.9) 50 / 56

8.12 we proceed by cases on

we proceed by cases on t to prove th

Synopsis: we proceed by cases on term to prove term

Pre-condition: t must inhabitant of an inductive type and th must be the conclusion to be proved by cases.

Action: It proceeds by cases on t

New sequents to prove: It opens one new sequent for each constructor of the type of t.

8.13 we proceed by induction on

we proceed by induction on t to prove th

Synopsis: we proceed by induction on term to prove term

Pre-condition: t must inhabitant of an inductive type and th must be the conclusion to be proved by induction.

Action: It proceed by induction on t.

New sequents to prove: It opens one new sequent for each constructor of the type of t.

8.14 we proved

justification we proved t (id)

Synopsis: justification we proved term (id)

Pre-condition: tmust have type Prop.

Action: It derives t using the justification and labels the conclusion with id.

New sequent to prove: None.

Matita V0.5.9 User Manual (rev. 0.5.9) 51 / 56

Chapter 9

Other commands

9.1 alias

alias id "s" = "def"

alias symbol "s" (instance n) = "def"

alias num (instance n) = "def"

Synopsis: alias [id qstring = qstring | symbol qstring [(instance nat)] = qstring | num [(instance nat)] = qstring]

Action: Used to give an hint to the disambiguating parser. When the parser is faced to the identifier (or symbol) s or to any
number, it will prefer interpretations that "map s (or the number) to def". For identifiers, "def" is the URI of the inter-
pretation. E.g.: cic:/matita/nat/nat.ind#xpointer(1/1/1) for the first constructor of the first inductive type defined in the
block of inductive type(s) cic:/matita/nat/nat.ind. For symbols and numbers, "def" is the label used to mark the wanted
interpretation.

When a symbol or a number occurs several times in the term to be parsed, it is possible to give an hint only for the instance
n. When the instance is omitted, the hint is valid for every occurrence.

Hints are automatically inserted in the script by Matita every time the user is interactively asked a question to disambiguate
a term. This way the user won’t be posed the same question twice when the script will be executed again.

9.2 check

check t

Synopsis: check term

Action: Opens a CIC browser window that shows t together with its type. The command is immediately removed from the
script.

9.3 eval

eval red on t

Synopsis: eval reduction-kind on term

Action: Opens a CIC browser window that shows the reduct of t together with its type.

Matita V0.5.9 User Manual (rev. 0.5.9) 52 / 56

9.4 prefer coercion

prefer coercion u

Synopsis: prefer coercion (uri | term)

Action: The already declared coercion u is preferred to other coercions with the same source and target.

9.5 coercion

coercion u with ariety saturation nocomposites

Synopsis: coercion (uri | term with) [nat [nat]] [nocomposites]

Action: Declares u as an implicit coercion. If the type of u is ∀x1:T1. . . . ∀x(n-1):T(n-1).Tn the coercion target is T(n - ariety)
while its source is T(n - ariety - saturation - 1). Every time a term x of type source is used with expected type target,
Matita automatically replaces x with (u ? . . . ? x ? . . . ?) to avoid a typing error. Note that the number of ? added after x
is saturation.

Implicit coercions are not displayed to the user: (u ? . . . ? x) is rendered simply as x.

When a coercion u is declared from source s to target t and there is already a coercion u’ of target s or source t, a composite
implicit coercion is automatically computed by Matita unless nocomposites is specified.

9.6 default

default "s" u1 ... un

Synopsis: default qstring uri [uri]. . .

Action: It registers a cluster of related definitions and theorems to be used by tactics and the rendering engine. Some functional-
ities of Matita are not available when some clusters have not been registered. Overloading a cluster registration is possible:
the last registration will be the default one, but the previous ones are still in effect.

s is an identifier of the cluster and u1 . . . un are the URIs of the definitions and theorems of the cluster. The number n of
required URIs depends on the cluster. The following clusters are supported.

9.7 hint

hint

Synopsis: hint

Action: Displays a list of theorems that can be successfully applied to the current selected sequent. The command is removed
from the script, but the window that displays the theorems allow to add to the script the application of the selected theorem.

9.8 include

include "s"

Synopsis: include qstring

Action: Every coercion, notation and interpretation that was active when the file s was compiled last time is made active. The
same happens for declarations of default definitions and theorems and disambiguation hints (aliases). On the contrary,
theorem and definitions declared in a file can be immediately used without including it.

The file s is automatically compiled if it is not compiled yet.

Matita V0.5.9 User Manual (rev. 0.5.9) 53 / 56

name expected object
for 1st URI

expected object
for 2nd URI

expected object
for 3rd URI

expected object
for 4th URI

expected object
for 5th URI

equality

an inductive type
(say, of type eq)
of type
∀A:Type.A →
Prop with one
family parameter
and one
constructor of
type ∀x:A.eq A x

a theorem of type
∀A.∀x,y:A.eq A
x y → eq A y x

a theorem of type
∀A.∀x,y,z:A.eq A
x y → eq A y z
→ eq A x z

∀A.∀a.∀ P:A →
Prop.P x →
∀y.eq A x y → P
y

∀A.∀a.∀ P:A →
Prop.P x →
∀y.eq A y x → P
y

true

an inductive type
of type Prop
with only one
constructor that
has no arguments

false

an inductive type
of type Prop
without
constructors

absurd
a theorem of type
∀A:Prop.∀B:Prop.A
→ Not A → B

Table 9.1: clusters

9.9 include’ "s"

Synopsis: include’ qstring

Action: Not documented (TODO), do not use it.

9.10 whelp

whelp locate "s"

whelp hint t

whelp elim t

whelp match t

whelp instance t

Synopsis: whelp [locate qstring | hint term | elim term | match term | instance term]

Action: Performs the corresponding query, showing the result in the CIC browser. The command is removed from the script.

9.11 qed

qed

Synopsis: qed

Action: Saves and indexes the current interactive theorem or definition. In order to do this, the set of sequents still to be proved
must be empty.

Matita V0.5.9 User Manual (rev. 0.5.9) 54 / 56

9.12 inline

inline "s" params

Synopsis: inline qstring inline_params

Action: Inlines a representation of the item s, which can be the URI of a HELM object. If an entire HELM directory (i.e. a base
URI) or the path of a *.ma source file is provided, all the contained objects are represented in a row. If the inlined object
has a proof, this proof is represented in several ways depending on the provided parameters.

9.12.1 inline-params

inline_params ::= [inline_param
[inline_param] . . .]

Table 9.2: inline-params

Matita V0.5.9 User Manual (rev. 0.5.9) 55 / 56

inline_param ::= axiom
Try to give an axiom flavour
(bodies are omitted even if
present)

| definition Try give a definition flavour
| theorem Try give a theorem flavour
| lemma Try give a lemma flavour
| remark Try give a remark flavour
| fact Try give a fact flavour

| variant Try give a variant flavour
(implies plain)

| declarative

Represent proofs using
declarative tactics (this is
the dafault and can be
omitted)

| procedural Represent proofs using
procedural tactics

| plain Represent proofs using
plain proof terms

| nodefaults

Do not use the tactics
depending on the default
command (rewrite in the
procedural mode)

| level=nat Set the level of the
procedural proof
representation (the default
is the highest level)

• Tactics used at level 1:
exact

• Additional tactics used at
level 2: letin, cut, change,
intros, apply, elim, cases,
rewrite

| depth=nat TODO

Table 9.3: inline-param

Matita V0.5.9 User Manual (rev. 0.5.9) 56 / 56

Chapter 10

License

Both Matita and this document are part of HELM, an Hypertextual, Electronic Library of Mathematics, developed at the Com-
puter Science Department, University of Bologna, Italy.

HELM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

HELM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with HELM; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. A copy of the GNU General Public License is
available at this link.

http://www.gnu.org/copyleft/gpl.html

	Introduction
	Features
	Matita vs Coq

	Installation
	Using the LiveCD
	Creating the virtual machine
	Sharing files with the real PC

	Installing from sources
	Getting the source code
	Requirements
	(optional) MySQL setup
	Compiling and installing

	Configuring Matita

	Getting started
	How to type Unicode symbols
	Browsing and searching
	Browsing the library
	Looking at a proof under development
	Searching the library
	Searching by name
	List of lemmas that can be applied
	Searching by exact match
	List of elimination principles for a given type
	Searching by instantiation

	Authoring
	How to compile a script
	The authoring interface

	Syntax
	Terms & co.
	Lexical conventions
	Terms

	Definitions and declarations
	axiom
	definition
	TODO
	(co)inductive types declaration
	record

	Proofs
	theorem
	variant
	lemma
	fact
	remark

	Tactic arguments
	intros-spec
	pattern
	reduction-kind
	auto-params
	justification

	Extending the syntax
	notation
	interpretation

	Tacticals
	Interactive proofs and definitions
	The proof status
	Tacticals

	Tactics
	Quick reference card
	absurd
	apply
	applyS
	assumption
	auto
	cases
	clear
	clearbody
	compose
	change
	constructor
	contradiction
	cut
	decompose
	demodulate
	destruct
	elim
	elimType
	exact
	exists
	fail
	fold
	fourier
	fwd
	generalize
	id
	intro
	intros
	inversion
	lapply
	left
	letin
	normalize
	reflexivity
	change
	rewrite
	right
	ring
	simplify
	split
	subst
	symmetry
	transitivity
	unfold
	whd

	Declarative Tactics
	Quick reference card
	assume
	by induction hypothesis we know
	case
	done
	let such that
	obtain
	suppose
	the thesis becomes
	we need to prove
	we have
	we proceed by cases on
	we proceed by induction on
	we proved

	Other commands
	alias
	check
	eval
	prefer coercion
	coercion
	default
	hint
	include
	include' "s"
	whelp
	qed
	inline
	inline-params

	License

