Matita V0.5.9 User Manual (rev. 0.5.9)

Copyright © 2006 The HELM team.

Both Matita and this document are free software, you can redistribute them and/or modify them under the terms of the GNU
General Public License as published by the Free Software Foundation. See Chapter 10 for more information.

$|$| COLLABORATORS | | | |
| :---: | :---: | :---: | :---: |
| | TITLE :
 Matita V0.5.9 User Manual (rev. 0.5.9) | | |
| ACTION | NAME | DATE | |
| WRITTEN BY | Andrea Asperti,
 Claudio Sacerdoti
 Coen, Ferruccio
 Guidi, Enrico Tassi,
 and Stefano
 Zacchiroli | December 23, 2014 | SIGNATURE |

REVISION HISTORY

NUMBER	DATE	DESCRIPTION	NAME
0.5 .9	$12 / 07 / 2006$		

Contents

1 Introduction 1
1.1 Features 1
1.2 Matita vs Coq 1
2 Installation 3
2.1 Using the LiveCD 3
2.1.1 Creating the virtual machine 3
2.1.2 \quad Sharing files with the real PC 7
2.2 Installing from sources 10
2.2.1 Getting the source code 10
2.2.2 Requirements 11
2.2.3 (optional) MySQL setup 11
2.2.4 Compiling and installing 12
2.3 Configuring Matita 12
3 Getting started 15
3.1 How to type Unicode symbols 15
3.2 Browsing and searching 15
3.2.1 Browsing the library 15
3.2.2 Looking at a proof under development 16
3.2.3 Searching the library 16
3.2.3.1 Searching by name 16
3.2.3.2 List of lemmas that can be applied 16
3.2.3.3 Searching by exact match 16
3.2.3.4 List of elimination principles for a given type 16
3.2.3.5 Searching by instantiation 16
3.3 Authoring 16
3.3.1 How to compile a script 16
3.3.2 The authoring interface 17
4 Syntax 18
4.1 Terms \& co. 18
4.1.1 Lexical conventions 18
4.1.2 Terms 21
4.2 Definitions and declarations 21
4.2.1 axiom 21
4.2.2 definition 21
4.2.3 TODO 21
4.2.4 (co)inductive types declaration 21
4.2.5 record 21
4.3 Proofs 22
4.3.1 theorem 22
4.3.2 variant 22
4.3.3 lemma 22
4.3.4 fact 22
4.3.5 remark 22
4.4 Tactic arguments 22
4.4.1 intros-spec 22
4.4.2 pattern 23
4.4.3 reduction-kind 24
4.4.4 auto-params 24
4.4.5 justification 24
5 Extending the syntax 26
5.1 notation 26
5.2 interpretation 26
6 Tacticals 30
6.1 Interactive proofs and definitions 30
6.2 The proof status 30
6.3 Tacticals 31
7 Tactics 34
7.1 Quick reference card 34
7.2 absurd 34
7.3 apply 34
7.4 applyS 34
7.5 assumption 36
7.6 auto 36
7.7 cases 36
7.8 clear 37
7.9 clearbody 37
7.10 compose 37
7.11 change 37
7.12 constructor 38
7.13 contradiction 38
7.14 cut 38
7.15 decompose 38
7.16 demodulate 39
7.17 destruct 39
7.18 elim 39
7.19 elimType 39
7.20 exact 40
7.21 exists 40
7.22 fail 40
7.23 fold 40
7.24 fourier 41
7.25 fwd 41
7.26 generalize 41
7.27 id 41
7.28 intro 42
7.29 intros 42
7.30 inversion 42
7.31 lapply 42
7.32 left 43
7.33 letin 43
7.34 normalize 43
7.35 reflexivity 43
7.36 change 44
7.37 rewrite 44
7.38 right 44
7.39 ring 44
7.40 simplify 45
7.41 split 45
7.42 subst 45
7.43 symmetry 45
7.44 transitivity 46
7.45 unfold 46
7.46 whd 46
8 Declarative Tactics 47
8.1 Quick reference card 47
8.2 assume 47
8.3 by induction hypothesis we know 48
8.4 case 48
8.5 done 48
8.6 let such that 48
8.7 obtain 48
8.8 suppose 49
8.9 the thesis becomes 49
8.10 we need to prove 49
8.11 we have 49
8.12 we proceed by cases on 50
8.13 we proceed by induction on 50
8.14 we proved 50
9 Other commands 51
9.1 alias 51
9.2 check 51
9.3 eval 51
9.4 prefer coercion 52
9.5 coercion 52
9.6 default 52
9.7 hint 52
9.8 include 52
9.9 include' "s" 53
9.10 whelp 53
9.11 qed 53
9.12 inline 54
9.12.1 inline-params 54
10 License 56

List of Figures

2.1 The brand new virtual machine 4
2.2 Mounting an ISO image 5
2.3 Choosing the ISO image 6
2.4 Choosing the ISO image 7
2.5 Set up a shared folder 8
2.6 Choosing the folder to share 9
2.7 Naming the shared folder 9
2.8 Using it from the virtual machine 10
2.9 Configuring the Databases 13

List of Tables

4.1 qstring 18
4.2 id 18
4.3 nat 19
4.4 char 19
4.5 uri-step 19
4.6 uri 19
4.7 csymbol 19
4.8 symbol 19
4.9 Terms 19
4.10 Simple terms 20
4.11 Arguments 20
4.12 Pattern matching 20
4.13 intros-spec 23
4.14 pattern 23
4.15 path 23
4.16 reduction-kind 24
4.17 auto-params 24
4.18 simple-auto-param 24
4.19 justification 25
5.1 usage 26
5.2 associativity 26
5.3 notation_rhs 27
5.4 unparsed_ast 27
5.5 enriched_term 27
5.6 unparsed_meta 27
5.7 level2_meta 27
5.8 notation_lhs 27
5.9 layout 28
5.10 literal 28
5.11 interpretation_argument 29
5.12 interpretation_rhs 29
6.1 proof script 31
6.2 proof steps 32
6.3 tactics and LCF tacticals 33
7.1 tactics 35
8.1 tactics 47
9.1 clusters 53
9.2 inline-params 54
9.3 inline-param 55

Chapter 1

Introduction

1.1 Features

Matita is an interactive theorem prover (or proof assistant) with the following characteristics:

- It is based on a variant of the Calculus of (Co)Inductive Constructions (CIC). CIC is also the logic of the Coq proof assistant.
- It adopts a procedural proof language, but it has a new set of small step tacticals that improve proof structuring and debugging.
- It has a stand-alone graphical user interface (GUI) inspired by CtCoq/Proof General. The GUI is implemented according to the state of the art. In particular:
- It is based and fully integrated with Gtk/Gnome.
- An on-line help can be browsed via the Gnome documentation browser.
- Mathematical formulae are rendered in two dimensional notation via MathML and Unicode.
- It integrates advanced browsing and searching procedures.
- It allows the use of the typical ambiguous mathematical notation by means of a disambiguating parser.
- It is compatible with the library of Coq (definitions and proof objects).

1.2 Matita vs Coq

The system shares a common look\&feel with the Coq proof assistant and its graphical user interface. The two systems have the same logic, very close proof languages and similar sets of tactics. Moreover, Matita is compatible with the library of Coq. From the user point of view the main lacking features with respect to Coq are:

- proof extraction;
- an extensible language of tactics;
- automatic implicit arguments;
- several ad-hoc decision procedures;
- several rarely used variants for most of the tactics;
- sections and local variables. To maintain compatibility with the library of Coq, theorems defined inside sections are abstracted by name over the section variables; their instances are explicitly applied to actual arguments by means of explicit named substitutions.

Still from the user point of view, the main differences with respect to Coq are:

- the language of tacticals that allows execution of partial tactical application;
- the unification of the concept of metavariable and existential variable;
- terms with subterms that cannot be inferred are always allowed as arguments of tactics or other commands;
- ambiguous terms are disambiguated by direct interaction with the user;
- theorems and definitions in the library are always accessible without needing to require/include them; right now, only notation needs to be included to become active, but we plan to remove this limitation.

Chapter 2

Installation

Matita is a quite complex piece of software, we thus recommend you to either install al precompiled version or use the LiveCD. If you are running Debian GNU/Linux (or one of its derivatives like Ubuntu), you can install matita typing

```
aptitude install matita matita-standard-library
```

If you are running MacOSX or Windows, give the LiveCD a try before trying to compile Matita from its sources.

2.1 Using the LiveCD

In the following, we will assume you have installed virtualbox for your platform and downloaded the iso image of the LiveCD

2.1.1 Creating the virtual machine

Click on the New button, a wizard will popup, you should ask to its questions as follows

1. The name should be something like Matita, but can be any meaningful string.
2. The OS type should be Debian
3. The base memory size can be 256 mega bytes, but you may want to increase it if you are going to work with huge formalizations.
4. The boot hard disk should be no hard disk. It may complain that this choice is not common, but it is right, since you will run a LiveCD you do not need to emulate an hard drive.

Now that you are done with the creation of the virtual machine, you need to insert the LiveCD in the virtual cd reader unit.

Figure 2.1: The brand new virtual machine

Click on CD/DVD-ROM (that should display something like: Not mouted). Then click on mount CD/DVD drive and select the ISO image option. The combo-box should display no available image, you need to add the ISO image you downloaded from the Matita website clicking on the button near the combo-box. to start the virtual machine.

Figure 2.2: Mounting an ISO image

In the newely opened window click the Add button

Figure 2.3: Choosing the ISO image

A new windows will pop-up: choose the file you downloaded (usually matita-version.iso) and click open.

File name: matita-0.5.6.iso
Open
File type:
CD/DVD-ROM images (*.iso)

Figure 2.4: Choosing the ISO image

Now select the new entry you just added as the CD image you want to insert in the virtual CD drive. You are now ready to start the virtual machine.

2.1.2 Sharing files with the real PC

The virtual machine Matita will run on, has its own file system, that is completely separated from the one of your real PC (thus your files are not available in the emulated environment) and moreover it is a non-presistent file system (thus you data is lost every time you turn off the virtual machine).
Virtualbox allows you to share a real folder (beloging to your real PC) with the emulated computer. Since this folder is persistent, you are encouraged to put your work there, so that it is not lost when the virtual machine is powered off.

The first step to set up a shared folder is to click on the shared folder configuration entry of the virtual machine.

Figure 2.5: Set up a shared folder

Then you shuld add a shared folder clicking on the plus icon on the right

Figure 2.6: Choosing the folder to share

Then you have to specify the real PC folder you want to share and name it. A reasonable folder to share is /home on a standard Unix system, while /Users on MaxOSX. The name you give to the share is important, you should remember it.

Figure 2.7: Naming the shared folder

Once your virtual machine is up and running, you can mount (that meand have access to) the shared folder by clicking on the Mount VirtualBox share icon, and typing the name of the share.

Figure 2.8: Using it from the virtual machine

A window will then pop-up, and its content will be the the content of the real PC folder.

2.2 Installing from sources

Install Matita from the sources is hard, you have been warned!

2.2.1 Getting the source code

You can get the Matita source code in two ways:

1. go to the download page and get the latest released source tarball;
2. get the development sources from our SVN repository. You will need the components/ and matita/ directories from the trunk/helm/software/ directory, plus the configure and Makefile* stuff from the same directory.
In this case you will need to run autoconf before proceding with the building instructions below.

2.2.2 Requirements

In order to build Matita from sources you will need some tools and libraries. They are listed below.

Note for Debian (and derivatives) users

If you are running a Debian GNU/Linux distribution, or any of its derivative like Ubuntu, you can use APT to install all the required tools and libraries since they are all part of the Debian archive.
apt-get install ocaml ocaml-findlib libgdome2-ocaml-dev liblablgtk2-ocaml-dev liblablgtkmathview-ocaml-dev liblablgtksourceview-ocaml-dev libsqlite3-ocaml-dev libocamInet-ocaml-dev libzip-ocaml-dev libhttp-ocaml-dev ocaml-ulex08 libexpat-ocaml-dev libmysql-ocaml-dev camlp5
An official debian package is going to be added to the archive too.

REQUIRED TOOLS AND LIBRARIES

OCaml the Objective Caml compiler, version 3.09 or above
Findlib OCaml package manager, version 1.1.1 or above
OCaml Expat OCaml bindings for the expat library
GMetaDOM OCaml bindings for the Gdome 2 library
OCaml HTTP OCaml library to write HTTP daemons (and clients)
LablGTK OCaml bindings for the GTK+ library, version 2.6.0 or above
GtkMathView, LablGtkMathView GTK+ widget to render MathML documents and its OCaml bindings
GtkSourceView , LablGtkSourceView extension for the GTK+ text widget (adding the typical features of source code editors) and its OCaml bindings
MySQL, OCaml MySQL SQL database and OCaml bindings for its client-side library
The SQL database itself is not strictly needed to run Matita, but the client libraries are.
Sqlite, OCaml Sqlite3 Sqlite database and OCaml bindings
Ocamlnet collection of OCaml libraries to deal with application-level Internet protocols and conventions ulex Unicode lexer generator for OCaml

CamIZip OCaml library to access . gz files

2.2.3 (optional) MySQL setup

To fully exploit Matita indexing and search capabilities on a huge metadata set you may need a working MySQL database. Detalied instructions on how to do it can be found in the MySQL documentation. Here you can find a quick howto.

In order to create a database you need administrator permissions on your MySQL installation, usually the root account has them. Once you have the permissions, a new database can be created executing mysqladmin create matita (matita is the default database name, you can change it using the $d b$. user key of the configuration file).

Then you need to grant the necessary access permissions to the database user of Matita, typing echo "grant all privileges on matita.* to helm; " I mysql matita should do the trick (helm is the default user name used by Matita to access the database, you can change it using the $d b$. user key of the configuration file).

Note

This way you create a database named matita on which anyone claiming to be the helm user can do everything (like adding dummy data or destroying the contained one). It is strongly suggested to apply more fine grained permissions, how to do it is out of the scope of this manual.

2.2.4 Compiling and installing

Once you get the source code the installations steps should be quite familiar.
First of all you need to configure the build process executing . /configure. This will check that all needed tools and library are installed and prepare the sources for compilation and installation.

Quite a few (optional) arguments may be passed to the configure command line to change build time parameters. They are listed below, together with their default values:

CONFIGURE COMMAND LINE ARGUMENTS

--with-runtime-dir=dir (Default:/usr/local/matita) Runtime base directory where all Matita stuff (executables, configuration files, standard library, ...) will be installed
--with-dbhost=host (Default: localhost) Default SQL server hostname. Will be used while building the standard library during the installation and to create the default Matita configuration. May be changed later in configuration file.
--enable-debug (Default: disabled) Enable debugging code. Not for the casual user.

Then you will manage the build and install process using make as usual. Below are reported the targets you have to invoke in sequence to build and install:

MAKE TARGETS

world builds components needed by Matita and Matita itself (in bytecode or native code depending on the availability of the OCaml native code compiler)
install installs Matita related tools, standard library and the needed runtime stuff in the proper places on the filesystem.
As a part of the installation process the Matita standard library will be compiled, thus testing that the just built matitac compiler works properly.

For this step you will need a working SQL database (for indexing the standard library while you are compiling it). See Database setup for instructions on how to set it up.

2.3 Configuring Matita

The configuration file is divided in four sections. The user and matita ones are self explicative and does not need user intervention. Here we report a sample snippet for these two sections. The remaining db and getter sections will be explained in details later.

```
<section name="user">
    <key name="home">$(HOME)</key>
    <key name="name">$(USER) </key>
</section>
<section name="matita">
    <key name="basedir">$(user.home)/.matita</key>
    <key name="rt_base_dir">/usr/share/matita/</key>
    <key name="owner">$(user.name)</key>
</section>
```

Matita needs to store/fetch data and metadata. Data is essentially composed of XML files, metadata is a set of tuples for a relational model. Data and metadata can produced by the user or be already available. Both kind of data/metadata can be local and/or remote.

The db section tells Matita where to store and retrieve metadata, while the getter section describes where XML files have to be found. The following picture describes the suggested configuration. Dashed arrows are determined by the configuration file.
local resources | remote resources

Figure 2.9: Configuring the Databases

The getter
Consider the following snippet and the URI cic:/matita/foo/bar.con. If Matita is asked to read that object it will resolve the object trough the getter. Since the first two entries are equally specific (longest match rule applies) first the path file://\$(matita.rt_base_dir)/xml/standard-library/foo/bar.con and then file://\$ (user.home)/.ma are inspected.

```
<section name="getter">
    <key name="cache_dir">$(user.home)/.matita/getter/cache</key>
    <key name="prefix">
        cic:/matita/
        file://$(matita.rt_base_dir)/xml/standard-library/
        ro
    </key>
    <key name="prefix">
        cic:/matita/
        file://$(user.home)/.matita/xml/matita/
    </key>
    <key name="prefix">
        cic:/Coq/
        http://mowgli.cs.unibo.it/xml/
        legacy
```

```
    </key>
</section>
```

if the same URI has to be written, the former prefix is skipped since it is marked as readonly (ro). Objects resolved using the third prefix are readonly too, and are retrieved using the network. There is no limit to the number of prefixes the user can define. The distinction between prefixes marked as readonly and legacy is that, legacy ones are really read only, while the ones marked with ro are considered for writing when Matita is started in system mode (used to publish user developments in the library space).

The db
The database subsystem has three fron ends: library, user and legacy. The latter is the only optional one. Every query is done on every frontend, making the duplicate free union of the results. The user front end kepps metadata produced by the user, and is thus heavily accessed in read/write mode, while the library and legacy fron ends are read only. Every front end can be connected to backend, the storage actually. Consider the following snippet.

```
<section name="db">
    <key name="metadata">mysql://mowgli.cs.unibo.it matita helm none legacy</key>
    <key name="metadata">file://$(matita.rt_base_dir) metadata.db helm helm library</key>
    <key name="metadata">file://$(matita.basedir) user.db helm helm user</key>
</section>
```

Here the usr database is a file (thus locally accessed trough the Sqlite library) placed in the user's home directory. The library one is placed in the Matita runtime directory. The legacy fron end is connected to a remote MySQL based storage. Every metadata key takes a path to the storage, the name of the database, the user name, a password (or none) and the name of the front end to which it is attached.

Chapter 3

Getting started

If you are already familiar with the Calculus of (Co)Inductive Constructions (CIC) and with interactive theorem provers with procedural proof languages (expecially Coq), getting started with Matita is relatively easy. You just need to learn how to type Unicode symbols, how to browse and search the library and how to author a proof script.

3.1 How to type Unicode symbols

Unicode characters can be typed in several ways:

- Using the "Ctrl+Shift+Unicode code" standard Gnome shortcut. E.g. Ctrl+Shift+3a9 generates " Ω ".
- Typing the ligature "\name" where "name" is a standard Unicode or LaTeX name for the character or an ASCII art resembling the shape of the character. Pressing "Alt+L" or Space or Enter just after the last character of the name converts the ligature to the Unicode symbol. E.g. "\Delta" followed by Alt+L generates " Δ ", while pressing Alt-L after " $=>$ " generates " \Rightarrow "
- Typing a symbol and rotating trough its equivalence class with Alt-L. E.g. pressing Alt-L after an "l" generates a " λ ", while pressing Alt-L after an " \rightarrow " once generates " \rightrightarrows " and pressing Alt-L again generates " \Rightarrow ".

The comprehensive list of symbols names or shortcuts and their equivalence classes is available clicking on the "TeX/UTF-8 table" item of the "View" menu.

There is a memory mechanism related to equivalence classes that remembers your last choice, making it the default one. For example, if you use "_" to generate "\&\#x23bb;" (that is the third choice, after "\&\#x23bd;" and "\&\#x23bc;"), the next time you type Alt-L after "_" you immediately get "\&\#x23bb;".

3.2 Browsing and searching

The CIC browser is used to browse and search the library. You can open a new CIC browser selecting "New Cic Browser" from the "View" menu of Matita, or by pressing "F3". The CIC browser is similar to a traditional Web browser.

3.2.1 Browsing the library

To browse the library, type in the location bar the absolute URI of the theorem, definition or library fragment you are interested in. "cic:/" is the root of the library. Contributions developed in Matita are under "cic:/matita"; all the others are part of the library of Coq.

Following the hyperlinks it is possible to navigate in the Web of mathematical notions. Proof are rendered in pseudo-natural language and mathematical notation is used for formulae. For now, mathematical notation must be included in the current script to be activated, but we plan to remove this limitation.

3.2.2 Looking at a proof under development

A proof under development is not yet part of the library. The special URI "about:proof" can be used to browse the proof currently under development, if there is one. The "home" button of the CIC browser sets the location bar to "about:proof".

3.2.3 Searching the library

The query bar of the CIC browser can be used to search the library of Matita for theorems or definitions that match certain criteria. The criteria is given by typing a term in the query bar and selecting an action in the drop down menu right of it.

3.2.3.1 Searching by name

TODO

3.2.3.2 List of lemmas that can be applied

TODO

3.2.3.3 Searching by exact match

TODO

3.2.3.4 List of elimination principles for a given type

TODO

3.2.3.5 Searching by instantiation

TODO

3.3 Authoring

3.3.1 How to compile a script

Scripts are compiled to base URIs. Base URIs are of the form "cic:/matita/path" and are given once for all for a set of scripts using the "root" file.

A "root" file has to be placed in the root of a script set, for example, consider the following files and directories, and assume you keep files in "list" separated from files in "sort" (for example the former directory may contain functions and proofs about lists, while latter sorting algorithms for lists):

```
list/
    list.ma (* depending just on the standard library *)
    utils/
        swap.ma (* including list.ma *)
sort/
    qsort.ma (* including utils/swap.ma *)
```

To be able to compile properly the contents of "list" a file called root has to be placed in it. The file should be like the following snippet.

```
baseuri=cic:/matita/mydatastructures
```

This file tells Matita that objects generated by "list.ma" have to be placed in "cic:/matita/mydatastructures/list" while objects generated by "swap.ma" have to be placed in "cic:/matita/mydatastructures/utils/swap".

Once you created the root file, you must generate a depend file. Enter the "list" directory (the root of yuor file set) and type "matitadep". Remember to regenerate the depend file every time you alter the dependencies of your files (for example including other scripts). You can now compile you files typing "matitac".

To compile the "sort" directory, create a root file in "sort/" like the following one and then run "matitadep".

```
baseuri=cic:/matita/myalgorithms
include_paths=../list
```

The include_paths field can declare a list of paths separated by space. Please omit any "/" from the end of base URIs or paths.

3.3.2 The authoring interface

TODO

Chapter 4

Syntax

To describe syntax in this manual we use the following conventions:

1. Non terminal symbols are emphasized and have a link to their definition. E.g.: term
2. Terminal symbols are in bold. E.g.: theorem
3. Optional sequences of elements are put in square brackets. E.g.: [in term]
4. Alternatives are put in square brakets and they are separated by vertical bars. E.g.: [<<>]
5. Repetitions of a sequence of elements are given by putting the sequence in square brackets, that are followed by three dots. The empty sequence is a valid repetition. E.g.: [and term]...
6. Characters belonging to a set of characters are given by listing the set elements in square brackets. Hyphens are used to specify ranges of characters in the set. E.g.: [a-zA-Z0-9_-]

4.1 Terms \& co.

4.1.1 Lexical conventions

qstring	$::=$	" \langle any sequence of characters excluded $"\rangle\rangle "$

Table 4.1: qstring

Table 4.2: id

nat	$::=$	$\langle\langle$ any sequence of valid
	$X M L$ digits $\rangle\rangle$	

Table 4.3: nat

char	$::=$	$[\mathbf{a - z A - Z 0 - 9}-]$

Table 4.4: char
uri-step $\quad::=\quad$ char[char]...

Table 4.5: uri-step

uri	$::=$	$[$ cic://theory:/]uri-step $[/$ /uri- step $] \ldots$. id $[$.id $] \ldots[\#$ mpointer

Table 4.6: uri
csymbol $\quad::=\quad$ 'id \quad (

Table 4.7: csymbol

symbol	$:=$	$\langle\langle$ None of the above $\rangle\rangle$

Table 4.8: symbol

term	::=	sterm	simple or delimited term	
	I	term term	application	
	I	λ args.term	λ-abstraction	
	1	Пargs.term	dependent product meant to define a datatype	
	1	$\forall a r g s . t e r m$	dependent product meant to define a proposition	
	I	term \rightarrow term	non-dependent product (logical implication or function space)	
	1	$\begin{aligned} & \text { let }[i d l(i d: \text { term })] \stackrel{\text { def }}{=} \text { term } \\ & \text { in } \text { term } \end{aligned}$	local definition	
	1	let [co]rec rec_def [and rec_def]... in term	(co)recursive definitions	
	1	\ldots	user provided notation	
rec_def	::=	$\begin{aligned} & i d\left[i d \\| _\mid(i d[, i d] \ldots\right. \\ & : \text { term })] \ldots \end{aligned}$		
		[0n id $]$ [: term] $\stackrel{\text { def }}{=}$ term $]$		

Table 4.9: Terms

Table 4.10: Simple terms

args	::=	_[: term]	ignored argument
	I	(_[: term])	ignored argument
	I	$i d[, i d] \ldots[$ term $]$	
	1	(id[,id]... [: term])	
$\operatorname{args} 2$::=	id	
	I	(id[,id]... : term)	

Table 4.11: Arguments

match_branch	$::=$	match_pattern \Rightarrow term	
match_pattern	$::=$	id	0 -ary constructor n -ary constructor (binds the n arguments)
	I $[$ id $] \ldots$)	n -ary constructor (binds the n arguments) any remaining constructor (ignoring its arguments)	

Table 4.12: Pattern matching

4.1.2 Terms

4.2 Definitions and declarations

4.2.1 axiom id: term

axiom H: P
\mathbf{H} is declared as an axiom that states \mathbf{P}

4.2.2 definition id[: term $[\stackrel{\text { def }}{=}$ term $]$

definition $\mathbf{f}: T \stackrel{\text { def }}{=} t$
\mathbf{f} is defined as \mathbf{t}; \mathbf{T} is its type. An error is raised if the type of \mathbf{t} is not convertible to \mathbf{T}.
\mathbf{T} is inferred from \mathbf{t} if omitted.
\mathbf{t} can be omitted only if \mathbf{T} is given. In this case Matita enters in interactive mode and \mathbf{f} must be defined by means of tactics.
Notice that the command is equivalent to theorem $\mathbf{f}: \mathbf{T} \stackrel{\text { def }}{=} \mathbf{t}$.

4.2.3 letrec TODO

TODO
4.2.4 [inductive|coinductive] id [args2]... : term $\stackrel{\text { def }}{=}[\mid][i d: t e r m][\mid$ id:term]... [with id : term $\stackrel{\text { def }}{=}[\mid]$ [id:term] [| id:term]...]...

Declares a family of two mutually inductive types \mathbf{i} and \mathbf{i} ' whose types are \mathbf{S} and \mathbf{S}^{\prime}, which must be convertible to sorts.
The constructors ki of type $\mathbf{T i}$ and $\mathbf{k i}$ ' of type $\mathbf{T i}$ ' are also simultaneously declared. The declared types \mathbf{i} and \mathbf{i} ' may occur in the types of the constructors, but only in strongly positive positions according to the rules of the calculus.

The whole family is parameterized over the arguments $\mathbf{x}, \mathbf{y}, \mathbf{z}$.
If the keyword coinductive is used, the declared types are considered mutually coinductive.
Elimination principles for the record are automatically generated by Matita, if allowed by the typing rules of the calculus according to the sort \mathbf{S}. If generated, they are named \mathbf{i}_{-}ind, \mathbf{i}_{-}rec and \mathbf{i}_{-}rect according to the sort of their induction predicate.
4.2.5 record id [args2]... : term $\stackrel{\text { def }}{=}\{[$ id $[: \mid:>]$ term $][; i d[: \mid:>]$ term $] \ldots\}$
record id $\mathbf{x} \mathbf{y} \mathbf{z :} \mathbf{S} \stackrel{\text { def }}{=}\{\mathrm{f} 1: \mathrm{T} 1 ; \ldots ; \mathrm{fn}: \mathrm{Tn}\}$
Declares a new record family id parameterized over $\mathbf{x}, \mathbf{y}, \mathbf{z}$.
\mathbf{S} is the type of the record and it must be convertible to a sort.
Each field $\mathbf{f} \mathbf{i s}$ declared by giving its type Ti. A record without any field is admitted.
Elimination principles for the record are automatically generated by Matita, if allowed by the typing rules of the calculus according to the sort \mathbf{S}. If generated, they are named i_ind, i_rec and i_rect according to the sort of their induction predicate.
For each field $\mathbf{f i}$ a record projection $\mathbf{f i}$ is also automatically generated if projection is allowed by the typing rules of the calculus according to the sort \mathbf{S}, the type $\mathbf{T 1}$ and the definability of depending record projections.
If the type of a field is declared with :>, the corresponding record projection becomes an implicit coercion. This is just syntactic sugar and it has the same effect of declaring the record projection as a coercion later on.

4.3 Proofs

4.3.1 theorem id $[$: term $] \stackrel{\text { def }}{=}$ term $]$

theorem $\mathbf{f}: \mathbf{P} \stackrel{\text { def }}{=} \mathbf{p}$
Proves a new theorem \mathbf{f} whose thesis is \mathbf{P}.
If \mathbf{p} is provided, it must be a proof term for \mathbf{P}. Otherwise an interactive proof is started.
\mathbf{P} can be omitted only if the proof is not interactive.
Proving a theorem already proved in the library is an error. To provide an alternative name and proof for the same theorem, use variant f: $\mathbf{P} \stackrel{\text { def }}{=} \mathbf{p}$.
A warning is raised if the name of the theorem cannot be obtained by mangling the name of the constants in its thesis.
Notice that the command is equivalent to definition $\mathbf{f}: \mathbf{T} \stackrel{\text { def }}{=} \mathbf{t}$.
4.3.2 variant id: term $\stackrel{\text { def }}{=}$ term
variant $\mathbf{f}: \quad T \stackrel{\text { def }}{=} \mathrm{t}$
Same as theorem $\mathbf{f}: \mathbf{T} \stackrel{\text { def }}{=} \mathbf{t}$, but it does not complain if the theorem has already been proved. To be used to give an alternative name or proof to a theorem.

4.3.3 lemma io[: term $] \stackrel{\text { def }}{=}$ term $]$

lemma $\mathbf{f}: \quad \mathbf{T} \stackrel{\text { def }}{=} \mathbf{t}$
Same as theorem $\mathbf{f}: \mathbf{T} \stackrel{\text { def }}{=} \mathbf{t}$
4.3.4 fact iod: term $][\stackrel{\text { def }}{=}$ term $]$
fact $\mathbf{f}: \quad \mathbf{T} \stackrel{\text { def }}{=} \mathrm{t}$
Same as theorem f: T $\stackrel{\text { def }}{=} \mathbf{t}$

4.3.5 remark id[: term $[\stackrel{\text { def }}{=}$ term $]$

remark $f: T \stackrel{\text { def }}{=} t$
Same as theorem $\mathbf{f}: \mathbf{T} \stackrel{\text { def }}{=} \mathbf{t}$

4.4 Tactic arguments

This section documents the syntax of some recurring arguments for tactics.

4.4.1 intros-spec

The natural number is the number of new hypotheses to be introduced. The list of identifiers gives the name for the first hypotheses.

intros-spec	$::=$
nat $][([i d] \ldots)]$	

Table 4.13: intros-spec

4.4.2 pattern

pattern	$::=$	in $[$ id $[:$ path $]] \ldots[\vdash$ path $]]$	simple pattern
	\mid	in match path $[$ in $[$ id $[:$	full pattern
		path $]] \ldots[\vdash$ path $]]$	f..

Table 4.14: pattern

	〈〈any sterm without
path	occurrences of Set, Prop,
	CProp, Type, id, uri and
	user provided notation;
	however, \% is now an
additional production for	
sterm $\rangle\rangle$	

Table 4.15: path
A path locates zero or more subterms of a given term by mimicking the term structure up to:

1. Occurrences of the subterms to locate that are represented by \%.
2. Subterms without any occurrence of subterms to locate that can be represented by ?.

Warning: the format for a path for a match ... with expression is restricted to: match path with [\Rightarrow path $\mathrm{I}_{\mathrm{L}} . \mathrm{I}_{-} \Rightarrow$ path] Its semantics is the following: the $n-t h "_{-} \Rightarrow$ path" branch is matched against the n-th constructor of the inductive data type. The head λ-abstractions of path are matched against the corresponding constructor arguments.

For instance, the path $\forall_{-\prime}: ? .(? \quad$? $\quad \rightarrow$ (? ? ? \rightarrow) locates at once the subterms $\mathbf{x}+\mathbf{y}$ and $\mathbf{x} * \mathbf{y}$ in the term $\forall \mathbf{x}, \mathrm{y}:$ nat. $\mathbf{x}+\mathrm{y}=1 \rightarrow \mathbf{0}=\mathbf{x} * \mathbf{y}$ (where the notation $\mathbf{A}=\mathrm{B}$ hides the term (eq $\mathbf{T} \mathbf{A B}$) for some type \mathbf{T}).
A simple pattern extends paths to locate subterms in a whole sequent. In particular, the pattern in $\mathrm{H}: \mathrm{p} \mathrm{K}: \mathrm{q} \vdash \mathrm{r}$ locates at once all the subterms located by the pattern \mathbf{r} in the conclusion of the sequent and by the patterns \mathbf{p} and q in the hypotheses H and K of the sequent.

If no list of hypotheses is provided in a simple pattern, no subterm is selected in the hypothesis. If the $\vdash \mathrm{p}$ part of the pattern is not provided, no subterm will be matched in the conclusion if at least one hypothesis is provided; otherwise the whole conclusion is selected.

Finally, a full pattern is interpreted in three steps. In the first step the match \mathbf{T} in part is ignored and a set S of subterms is located as for the case of simple patterns. In the second step the term \mathbf{T} is parsed and interpreted in the context of each subterm s $\in S$. In the last term for each $s \in S$ the interpreted term \mathbf{T} computed in the previous step is looked for. The final set of subterms located by the full pattern is the set of occurrences of the interpreted \mathbf{T} in the subterms s.
A full pattern can always be replaced by a simple pattern, often at the cost of increased verbosity or decreased readability.
Example: the pattern \vdash in match $\mathbf{x}+\mathrm{y}$ in $\forall_{-\prime}$, ? . (? ? \% ? locates only the first occurrence of $\mathbf{x}+\mathrm{y}$ in the sequent \mathbf{x}, y : nat $\vdash \forall \mathrm{z}, \mathrm{w}$: nat. $(\mathrm{x}+\mathrm{y}) *(\mathrm{z}+\mathrm{w})=\mathbf{z} *(\mathrm{x}+\mathrm{y})+\mathrm{w} *(\mathrm{x}+\mathrm{y})$. The corresponding simple pattern is $\vdash \forall_{-\prime}$:? (? ? (? \% ? ?).

Every tactic that acts on subterms of the selected sequents have a pattern argument for uniformity. To automatically generate a simple pattern:

1. Select in the current goal the subterms to pass to the tactic by using the mouse. In order to perform a multiple selection of subterms, hold the Ctrl key while selecting every subterm after the first one.
2. From the contextual menu select "Copy".
3. From the "Edit" or the contextual menu select "Paste as pattern"

4.4.3 reduction-kind

Reduction kinds are normalization functions that transform a term to a convertible but simpler one. Each reduction kind can be used both as a tactic argument and as a stand-alone tactic.

reduction-kind	$:=$	normalize	Computes the $\beta \delta \iota \zeta$-normal form Computes a form supposed to be simpler δ-reduces the constant or variable if specified, or that in head position
	I	unfold [sterm $]$	Computes the $\beta \delta i \zeta$-weak-head normal form

Table 4.16: reduction-kind

4.4.4 auto-params

auto_params $::=$	$[$ simple_auto_param $] \ldots$
	$[$ by term $[$, term $] \ldots]$

Table 4.17: auto-params

simple_auto_param	::=	depth=nat	Give a bound to the depth of the search tree
	1	width=nat	The maximal width of the search tree
	1	library	Search everywhere (not only in included files)
	1	type	Try to close also goals of sort Type, otherwise only goals living in sort Prop are attacked.
	1	paramodulation	Try to close the goal performing unit-equality paramodulation
	1	size=nat	The maximal number of nodes in the proof
	1	timeout=nat	Timeout in seconds

Table 4.18: simple-auto-param

4.4.5 justification

justification	$::=$	using term	Proof term manually
provided			
	।	auto_params	Call automation

Table 4.19: justification

Chapter 5

Extending the syntax

Introduction: TODO

5.1 notation

notation usage "presentation" associativity with precedence p for content
Synopsis: notation [usage] "notation_lhs" [associativity] with precedence nat for notation_rhs
Action: Declares a mapping between the presentation AST presentation and the content AST content. The declared presentation AST fragment presentation is at precedence level \mathbf{p}. The precedence level is used to determine where parentheses must be inserted. In particular, the content AST fragment content is actually a pattern, since it contains placeholders (variables) for sub-ASTs. Every placeholder for a term is given an expected precedence level. Parentheses must be inserted around sub-ASTs having a precedence level strictly smaller than the expected one.
If presentation describes a binary infix operator and if no precedence level is explicitly given for the operator arguments, an associativity declaration can be given to automatically choose the right level for the operands. Otherwise, no associativity can be given.
If direction is omitted, the mapping is bi-directional and is used both during parsing and pretty-printing of terms. If direction is >, the mapping is used only during parsing; if it is <, it is used only during pretty-printing. Thus it is possible to use simple notations to type for writing the term, and nicer ones for rendering it.

Notation arguments:

	Notation arguments:		
usage	$::=$	$>$	Only for pretty-printing
	1		Only for parsing

Table 5.1: usage

associativity	$::=$	left associative	Left associative
	\mid	right associative	Right associative
	\mid	non associative	Non associative (default)

Table 5.2: associativity

5.2 interpretation

interpretation "description" 'symbol $\mathrm{p}_{1} \ldots \mathrm{p}_{\mathrm{n}}=\mathrm{rhs}$

notation_rhs	$::=$	unparsed_ast	TODO
	1	unparsed_meta	TODO

Table 5.3: notation_rhs
$\left.\begin{array}{lll}\hline \text { unparsed_ast } & ::= & \text { @\{enriched_term }\}\end{array} \begin{array}{l}\text { A content level AST (a term } \\ \text { which is parsed, but not } \\ \text { disambiguated). } \\ \text { @id is just an abbreviation } \\ \text { for @ \{id\} } \\ \text { @symbol is just an } \\ \text { abbreviation for } \\ \text { @\{'symbol }\}\end{array}\right]$

Table 5.4: unparsed_ast

	〈A term that may contain occurrences of
enriched_term	unparsed_meta, even as variable names in binders, and occurrences of csymbol $\rangle\rangle$

Table 5.5: enriched_term

unparsed_meta	$::=$	\$\{level2_meta $\}$	TODO \$id is just an abbreviation for $\$\{i d\}$
	\$id	\$_ is just an abbreviation for $\$\left\{_\right\}$	

Table 5.6: unparsed_meta

level2_meta	::=	unparsed_ast	TODO
	1	term nat id	TODO
	I	number id	TODO
	,	ident $i d$	TODO
	I	fresh id	TODO
	I	anonymous	TODO
	1	id	TODO
	1	fold [left\|right] level2_meta rec id level2_meta	TODO
	I	default level2_meta level2_meta	TODO
	1	if level2_meta then level2_meta else level2_meta	TODO
	1	fail	TODO

Table 5.7: level2_meta
notation_lhs $\quad::=\quad$ layout [layout]...

Table 5.8: notation_lhs

layout	::=	layout \sub layout	Subscript
	1	layout \sup layout	Superscript
	I	layout \below layout	
	I	layout \above layout	
	I	layout \over layout	
	,	layout \atop layout	
	1	layout \frac layout	Fraction
	1	linfrule layout layout layout	Inference rule (premises, conclusion, rule name)
	1	\sqrt layout	Square root
	,	\root layout \of layout	Generalized root
	I	hbox (layout [layout]...)	Horizontal box
	I	vbox (layout [layout]...)	Vertical box
	I	hvbox (layout [layout]...)	Horizontal and vertical box
	1	hovbox (layout [layout]...)	Horizontal or vertical box
	I	break	Breakable space
	1	(layout [layout]...)	Group
	1	id	Placeholder for a term with no explicit precedence
	1	term nat id	Placeholder for a term with explicit expected precedence
	I	number $i d$	Placeholder for a natural number
	1	ident $i d$	Placeholder for an identifier
	I	literal	Literal
	1	opt layout	Optional layout (it can be omitted for parsing)
	1	list0 layout [sep literal]	List of layouts separated by sep (default: any blank)
	1	list 1 layout [sep literal]	Non empty list of layouts separated by sep (default: any blank)
	1	mstyle id value (layout)	Style attributes like color \#ff0000
	1	mpadded id value (layout)	padding attributes like width -150\%
	1	$\begin{aligned} & \text { maction (layout) [(layout) } \\ & \ldots \text {..] } \end{aligned}$	Alternative notations (output only)

Table 5.9: layout

literal	$::=$	symbol	Unicode symbol
	\mid	$n a t$	Natural number (a constant)
	I	,id	New keyword for the lexer

Table 5.10: literal

Synopsis: interpretation qstring csymbol [interpretation_argument]... $=$ interpretation_rhs
Action: It declares a bi-directional mapping $\{\ldots\}$ between the content-level AST $\mathbf{s y m b o l}_{\mathbf{s}} \mathbf{t}_{\mathbf{1}} \ldots \mathbf{t}_{\mathbf{n}}$ and the semantic term $\operatorname{rhs}\left[\left\{\mathbf{t}_{\mathbf{1}}\right\} / \mathbf{p}_{\mathbf{1}} ; \ldots ;\left\{\mathbf{t}_{\mathbf{n}}\right\} / \mathbf{p}_{\mathbf{n}}\right]$ (the simultaneous substitution in $\mathbf{r h s}$ of the interpretation $\{\ldots\}$ of every content-level actual argument $\mathbf{t}_{\mathbf{i}}$ for its corresponding formal parameter $\mathbf{p}_{\mathbf{i}}$). The description must be a textual description of the meaning associated to 'symbol by this interpretation, and is used by the user interface of Matita to provide feedback on the interpretation of ambiguous terms.

	Interpretation arguments:
interpretation_argument	$:=$
	A formal parameter. If the name of the formal parameter is prefixed by n symbols " η ", then the
mapping performs	
(multiple) η-expansions to	
grant that the semantic	
actual parameter begins	
with at least n	
λ-abstractions.	

Table 5.11: interpretation_argument
\(\left.$$
\begin{array}{llll}\hline \text { interpretation_rhs } & := & \text { uri } & \begin{array}{l}\text { A constant, specified by its } \\
\text { URI } \\
\text { A constant, specified by its } \\
\text { name, or a bound variable. }\end{array}
$$

\& If the constant name is

ambiguous, the one

corresponding to the last

implicitly or explicitly

specified alias is used.\end{array}\right\}\)| An implicit parameter |
| :--- |

Table 5.12: interpretation_rhs

Chapter 6

Tacticals

6.1 Interactive proofs and definitions

An interactive definition is started by giving a definition command omitting the definiens. An interactive proof is started by using one of the proof commands omitting an explicit proof term.
An interactive proof or definition can and must be terminated by a qed command when no more sequents are left to prove. Between the command that starts the interactive session and the qed command the user must provide a procedural proof script made of tactics structured by means of tacticals.

In the tradition of the LCF system, tacticals can be considered higher order tactics. Their syntax is structured and they are executed atomically. On the contrary, in Matita the syntax of several tacticals is destructured into a sequence of tokens and tactics in such a way that is is possible to stop execution after every single token or tactic. The original semantics is preserved: the execution of the whole sequence yields the result expected by the original LCF-like tactical.

6.2 The proof status

During an interactive proof, the proof status is made of the set of sequents to prove and the partial proof built so far.
The partial proof can be inspected on demand in the CIC browser. It will be shown in pseudo-natural language produced on the fly from the proof term.

The set of sequents to prove is shown in the notebook of the authoring interface, in the top-right corner of the main window of Matita. Each tab shows a different sequent, named with a question mark followed by a number. The current role of the sequent, according to the following description, is also shown in the tab tag.

1. Selected sequents (name in boldface, e.g. ?3). The next tactic will be applied to every selected sequent, producing new selected sequents. Tacticals such as branching ("[") or "focus" can be used to change the set of selected sequents.
2. Sibling sequents (name prefixed by a vertical bar and their position, e.g. I_{3} ?2). When the set of selected sequents has more than one element, the user can decide to focus in turn on each of them. The branching tactical ("[") selects the first sequent only, marking every previously selected sequent as a sibling sequent. Each sibling sequent is given a different position. The tactical "2,3:" can be used to select one or more sibling sequents, different from the one proposed, according to their position. Once the user starts to work on the selected sibling sequents it becomes impossible to select a new set of siblings until the ("I") tactical is used to end work on the current one.
3. Automatically solved sibling sequents (name strokethrough, e.g. 1_{3} ?2). Sometimes a tactic can close by side effects a sibling sequent the user has not selected yet. The sequent is left in the automatically solved status in order for the user to explicitly accept (using the "skip" tactical) the automatic instantiation in the proof script. This way the correspondence between the number of branches in the proof script and the number of sequents generated in the proof is preserved.

6.3 Tacticals

proof-script $::=\quad$ proof-step $[$ proof-step]...

Table 6.1: proof script
Every proof step can be immediately executed.

proof-step	::=	LCF-tactical • ; [unfocus focus nat [nat]...] nat[$n a t] \ldots$.. \%kip \%	The tactical is applied to each selected sequent. Each new sequent becomes a selected sequent. The first selected sequent becomes the only one selected. All the remaining previously selected sequents are proposed to the user one at a time when the next "." is used. Nothing changes. Use this proof step as a separator in concrete syntax. Every selected sequent becomes a sibling sequent that constitute a branch in the proof. Moreover, the first sequent is also selected. Stop working on the current branch of the innermost branching proof. The sibling branches become the sibling sequents and the first one is also selected. The sibling sequents specified by the user become the next selected sequents. Every sibling branch not considered yet in the innermost branching proof becomes a selected sequent. Accept the automatically provided instantiation (not shown to the user) for the currently selected automatically closed sibling sequent. Stop analyzing branches for the innermost branching proof. Every sequent opened during the branching proof and not closed yet becomes a selected sequent. Selects the sequents specified by the user. The selected sequents must be completely closed (no new sequents left open) before doing an "unfocus that restores the current set of sibling branches. Used to match the innermost "focus" tactical when all the sequents selected by it have been closed. Until "unfocus" is performed, it is not possible
			to progress in the rest of the proof.

LCF-tactical	::=	tactic LCF-tactical ; LCF-tactical LCF-tactical [[LCF-tactical] [I LCF-tactical]...]	Applies the specified tactic. Applies the first tactical first and the second tactical to each sequent opened by the first one. Applies the first tactical first and each tactical in the list of tacticals to the corresponding sequent opened by the first one. The number of tacticals provided in the list must be equal to the number of sequents opened by the first tactical.
	1	do nat LCF-tactical	TODO
	I	repeat $L C F$-tactical	TODO
	1	first [[LCF-tactical] [l LCF-tactical]...]	TODO
	1	try LCF-tactical	TODO
	1	solve [[LCF-tactical] [l LCF-tactical]...]	TODO
	1	(LCF-tactical)	Used for grouping during parsing.

Table 6.3: tactics and LCF tacticals

Chapter 7

Tactics

7.1 Quick reference card

7.2 absurd

absurd P

Synopsis: absurd sterm
Pre-conditions: P must have type Prop.
Action: It closes the current sequent by eliminating an absurd term.
New sequents to prove: It opens two new sequents of conclusion \mathbf{P} and $\neg \mathbf{P}$.

7.3 apply

apply t

Synopsis: apply sterm
Pre-conditions: \mathbf{t} must have type $\mathbf{T}_{\mathbf{1}} \rightarrow \ldots \rightarrow \mathbf{T}_{\mathbf{n}} \rightarrow \mathbf{G}$ where \mathbf{G} can be unified with the conclusion of the current sequent.
Action: It closes the current sequent by applying \mathbf{t} to \mathbf{n} implicit arguments (that become new sequents).
New sequents to prove: It opens a new sequent for each premise $\mathbf{T}_{\mathbf{i}}$ that is not instantiated by unification. $\mathbf{T}_{\mathbf{i}}$ is the conclusion of the \mathbf{i}-th new sequent to prove.

7.4 applyS

```
applyS t auto_params
```

Synopsis: applyS sterm auto_params
Pre-conditions: \mathbf{t} must have type $\mathbf{T}_{\mathbf{1}} \rightarrow \ldots \rightarrow \mathbf{T}_{\mathbf{n}} \rightarrow \mathbf{G}$.

tactic	::=	absurd sterm
	1	apply sterm
	I	applyS sterm auto_params
	I	assumption
	।	auto auto_params. autobatch
		auto_params
	1	cases term pattern [([id]...)]
	I	change pattern with sterm
	I	clear id [id...]
	1	clearbody id
	।	compose [nat] sterm [with sterm]
		[intros-spec]
	1	constructor nat
	,	contradiction
	,	cut sterm [as id]
	I	decompose [as $i d . .$.]
	1	demodulate auto_params
	1	destruct sterm
	I	elim sterm pattern [using sterm]
		intros-spec
	1	elimType sterm [using sterm]
	1	intros-spec
	1	exact sterm
	I	exists
	,	fail
	I	fold reduction-kind sterm pattern
	I	fourier
	I	fwd id [as id [id]...]
	I	generalize pattern [as id]
	1	id
	I	intro [id]
	I	intros intros-spec
	1	inversion sterm
	I	lapply [linear] [depth=nat] sterm [to sterm [,sterm. . .]] [as id]
	1	left
	1	letin id $\stackrel{\text { def }}{=}$ sterm
	1	normalize pattern
	I	reflexivity
	I	replace pattern with sterm
	I	rewrite [<\|>] sterm pattern
	I	right
	I	ring
	I	simplify pattern
	I	split
	I	subst
	I	symmetry
	I	transitivity sterm
	I	unfold [sterm] pattern
	,	whd pattern

Table 7.1: tactics

Action: applyS is useful when apply fails because the current goal and the conclusion of the applied theorems are extensionally equivalent up to instantiation of metavariables, but cannot be unified. E.g. the goal is $\mathbf{P}(\mathbf{n} * \mathbf{O}+\mathbf{m})$ and the theorem to be applied proves $\forall \mathbf{m} . \mathbf{P}(\mathbf{m}+\mathbf{O})$.
It tries to automatically rewrite the current goal using auto paramodulation to make it unifiable with \mathbf{G}. Then it closes the current sequent by applying \mathbf{t} to \mathbf{n} implicit arguments (that become new sequents). The auto_params parameters are passed directly to auto paramodulation.

New sequents to prove: It opens a new sequent for each premise $\mathbf{T}_{\mathbf{i}}$ that is not instantiated by unification. $\mathbf{T}_{\mathbf{i}}$ is the conclusion of the \mathbf{i}-th new sequent to prove.

7.5 assumption

assumption

Synopsis: assumption

Pre-conditions: There must exist an hypothesis whose type can be unified with the conclusion of the current sequent.
Action: It closes the current sequent exploiting an hypothesis.
New sequents to prove: None

7.6 auto

auto params

Synopsis: auto auto_params.
autobatch auto_params
Pre-conditions: None, but the tactic may fail finding a proof if every proof is in the search space that is pruned away. Pruning is controlled by the optional params. Moreover, only lemmas whose type signature is a subset of the signature of the current sequent are considered. The signature of a sequent is essentially the set of constats appearing in it.

Action: It closes the current sequent by repeated application of rewriting steps (unless paramodulation is omitted), hypothesis and lemmas in the library.

New sequents to prove: None

7.7 cases

cases t pattern hyps

Synopsis: cases term pattern $[([i d] \ldots)]$
Pre-conditions: \mathbf{t} must inhabit an inductive type
Action: It proceed by cases on \mathbf{t}. The new generated hypothesis in each branch are named according to hyps. The elimintation predicate is restricted by pattern. In particular, if some hypothesis is listed in pattern, the hypothesis is generalized and cleared before proceeding by cases on t. Currently, we only support patterns of the form $\mathbf{H}_{\mathbf{1}} \ldots \mathbf{H}_{\mathbf{n}} \vdash \%$. This limitation will be lifted in the future.

New sequents to prove: One new sequent for each constructor of the type of \mathbf{t}. Each sequent has a new hypothesis for each argument of the constructor.

7.8 clear

clear $\mathrm{H}_{1} \ldots \mathrm{H}_{\mathrm{m}}$
Synopsis: clear id [id...]
Pre-conditions: $\mathbf{H}_{\mathbf{1}} \ldots \mathbf{H}_{\mathrm{m}}$ must be hypotheses of the current sequent to prove.
Action: It hides the hypotheses $\mathbf{H}_{\mathbf{1}} \ldots \mathbf{H}_{\mathbf{m}}$ from the current sequent.
New sequents to prove: None

7.9 clearbody

clearbody H

Synopsis: clearbody $i d$
Pre-conditions: H must be an hypothesis of the current sequent to prove.
Action: It hides the definiens of a definition in the current sequent context. Thus the definition becomes an hypothesis.
New sequents to prove: None.

7.10 compose

compose n t1 with t2 hyps
Synopsis: compose [nat] sterm [with sterm] [intros-spec]

Pre-conditions:

Action: Composes t1 with t 2 in every possible way \mathbf{n} times introducing generated terms as if intros hyps was issued.
If $\mathbf{t} \mathbf{1}: \forall \mathbf{x}: \mathbf{A} \cdot \mathbf{B}[\mathbf{x}]$ and $\mathbf{t} \mathbf{2}: \forall \mathbf{x}, \mathbf{y}: \mathbf{A} \cdot \mathbf{B}[\mathbf{x}] \rightarrow \mathbf{B}[\mathbf{y}] \rightarrow \mathbf{C}[\mathbf{x}, \mathbf{y}]$ it generates:

- $\lambda \mathbf{x , y : A . t 2 x y (t 1 x) : ~} \forall \mathbf{x}, \mathbf{y}: A . B[y] \rightarrow C[x, y]$
- $\lambda \mathbf{x , y : A . ~} \lambda \mathbf{H}: B[x] . t 2$ x y $\mathbf{H}(\mathbf{t} 1 \mathbf{y}): \forall \mathbf{x , y}: A . B[x] \rightarrow C[x, y]$

If $\mathbf{t} \mathbf{2}$ is omitted it composes $\mathbf{t 1}$ with every hypothesis that can be introduced. \mathbf{n} iterates the process.
New sequents to prove: The same, but with more hypothesis eventually introduced by the intros-spec.

7.11 change

change patt with t
Synopsis: change pattern with sterm
Pre-conditions: Each subterm matched by the pattern must be convertible with the term \mathbf{t} disambiguated in the context of the matched subterm.

Action: It replaces the subterms of the current sequent matched by patt with the new term \mathbf{t}. For each subterm matched by the pattern, \mathbf{t} is disambiguated in the context of the subterm.

New sequents to prove: None.

7.12 constructor

```
constructor n
```

Synopsis: constructor nat
Pre-conditions: The conclusion of the current sequent must be an inductive type or the application of an inductive type with at least \mathbf{n} constructors.

Action: It applies the \mathbf{n}-th constructor of the inductive type of the conclusion of the current sequent.
New sequents to prove: It opens a new sequent for each premise of the constructor that can not be inferred by unification. For more details, see the apply tactic.

7.13 contradiction

contradiction

Synopsis: contradiction
Pre-conditions: There must be in the current context an hypothesis of type False.
Action: It closes the current sequent by applying an hypothesis of type False.
New sequents to prove: None

7.14 cut

cut P as H

Synopsis: cut sterm [as id]
Pre-conditions: P must have type Prop.
Action: It closes the current sequent.
New sequents to prove: It opens two new sequents. The first one has an extra hypothesis \mathbf{H} :P. If \mathbf{H} is omitted, the name of the hypothesis is automatically generated. The second sequent has conclusion \mathbf{P} and hypotheses the hypotheses of the current sequent to prove.

7.15 decompose

```
decompose as H1_ _. H
```

Synopsis: decompose [as id...]
Pre-conditions: None.
Action: For each each premise \mathbf{H} of type \mathbf{T} in the current context where \mathbf{T} is a non-recursive inductive type without right parameters and of sort Prop or CProp, the tactic runs $\operatorname{elim} \mathbf{H}$ as $\mathbf{H}_{\mathbf{1}} \ldots \mathbf{H}_{\mathbf{m}}$, clears \mathbf{H} and runs itself recursively on each new premise introduced by elim in the opened sequents.

New sequents to prove: The ones generated by all the elim tactics run.

7.16 demodulate

demodulate auto_params
Synopsis: demodulate auto_params
Pre-conditions: None.
Action: TODO
New sequents to prove: None.

7.17 destruct

destruct p

Synopsis: destruct sterm

Pre-conditions: \mathbf{p} must have type $\mathbf{E}_{\mathbf{1}}=\mathbf{E}_{\mathbf{2}}$ where the two sides of the equality are possibly applied constructors of an inductive type.

Action: The tactic recursively compare the two sides of the equality looking for different constructors in corresponding position. If two of them are found, the tactic closes the current sequent by proving the absurdity of \mathbf{p}. Otherwise it adds a new hypothesis for each leaf of the formula that states the equality of the subformulae in the corresponding positions on the two sides of the equality.

New sequents to prove: None.

7.18 elim

elim t pattern using th hyps
Synopsis: elim sterm pattern [using sterm] intros-spec
Pre-conditions: \mathbf{t} must inhabit an inductive type and th must be an elimination principle for that inductive type. If th is omitted the appropriate standard elimination principle is chosen.

Action: It proceeds by cases on the values of \mathbf{t}, according to the elimination principle $\mathbf{t h}$. The induction predicate is restricted by pattern. In particular, if some hypothesis is listed in pattern, the hypothesis is generalized and cleared before eliminating t

New sequents to prove: It opens one new sequent for each case. The names of the new hypotheses are picked by hyps, if provided. If hyps specifies also a number of hypotheses that is less than the number of new hypotheses for a new sequent, then the exceeding hypothesis will be kept as implications in the conclusion of the sequent.

7.19 elimType

elimType T using th hyps
Synopsis: elimType sterm [using sterm] intros-spec
Pre-conditions: T must be an inductive type.
Action: TODO (severely bugged now).
New sequents to prove: TODO

7.20 exact

exact p

Synopsis: exact sterm
Pre-conditions: The type of \mathbf{p} must be convertible with the conclusion of the current sequent.
Action: It closes the current sequent using \mathbf{p}.
New sequents to prove: None.

7.21 exists

exists

Synopsis: exists

Pre-conditions: The conclusion of the current sequent must be an inductive type or the application of an inductive type with at least one constructor.

Action: Equivalent to constructor 1.
New sequents to prove: It opens a new sequent for each premise of the first constructor of the inductive type that is the conclusion of the current sequent. For more details, see the constructor tactic.

7.22 fail

fail

Synopsis: fail
Pre-conditions: None.
Action: This tactic always fail.
New sequents to prove: N.A.

7.23 fold

fold red t patt

Synopsis: fold reduction-kind sterm pattern

Pre-conditions: The pattern must not specify the wanted term.
Action: First of all it locates all the subterms matched by patt. In the context of each matched subterm it disambiguates the term \mathbf{t} and reduces it to its red normal form; then it replaces with \mathbf{t} every occurrence of the normal form in the matched subterm.

New sequents to prove: None.

7.24 fourier

fourier

Synopsis: fourier

Pre-conditions: The conclusion of the current sequent must be a linear inequation over real numbers taken from standard library of Coq. Moreover the inequations in the hypotheses must imply the inequation in the conclusion of the current sequent.

Action: It closes the current sequent by applying the Fourier method.
New sequents to prove: None.

7.25 fwd

fwd H as $H_{0} \ldots H_{n}$

Synopsis: fwd $i d[$ as $i d[i d] \ldots]$
Pre-conditions: The type of \mathbf{H} must be the premise of a forward simplification theorem.
Action: This tactic is under development. It simplifies the current context by removing \mathbf{H} using the following methods: forward application (by lapply) of a suitable simplification theorem, chosen automatically, of which the type of \mathbf{H} is a premise, decomposition (by decompose), rewriting (by rewrite). $\mathbf{H}_{\mathbf{0}} \ldots \mathbf{H}_{\mathbf{n}}$ are passed to the tactics fwd invokes, as names for the premise they introduce.
New sequents to prove: The ones opened by the tactics fwd invokes.

7.26 generalize

generalize patt as H
Synopsis: generalize pattern [as id]
Pre-conditions: All the terms matched by patt must be convertible and close in the context of the current sequent.
Action: It closes the current sequent by applying a stronger lemma that is proved using the new generated sequent.
New sequents to prove: It opens a new sequent where the current sequent conclusion \mathbf{G} is generalized to $\forall \mathbf{x} . \mathbf{G}\{\mathbf{x} / \mathbf{t}\}$ where $\{\mathbf{x} / \mathbf{t}\}$ is a notation for the replacement with \mathbf{x} of all the occurrences of the term \mathbf{t} matched by patt. If patt matches no subterm then \mathbf{t} is defined as the wanted part of the pattern.

7.27 id

id

Synopsis: id
Pre-conditions: None.
Action: This identity tactic does nothing without failing.
New sequents to prove: None.

7.28 intro

intro H

Synopsis: intro [id]

Pre-conditions: The conclusion of the sequent to prove must be an implication or a universal quantification.
Action: It applies the right introduction rule for implication, closing the current sequent.
New sequents to prove: It opens a new sequent to prove adding to the hypothesis the antecedent of the implication and setting the conclusion to the consequent of the implicaiton. The name of the new hypothesis is \mathbf{H} if provided; otherwise it is automatically generated.

7.29 intros

intros hyps

Synopsis: intros intros-spec

Pre-conditions: If hyps specifies a number of hypotheses to introduce, then the conclusion of the current sequent must be formed by at least that number of imbricated implications or universal quantifications.

Action: It applies several times the right introduction rule for implication, closing the current sequent.
New sequents to prove: It opens a new sequent to prove adding a number of new hypotheses equal to the number of new hypotheses requested. If the user does not request a precise number of new hypotheses, it adds as many hypotheses as possible. The name of each new hypothesis is either popped from the user provided list of names, or it is automatically generated when the list is (or becomes) empty.

7.30 inversion

inversion t

Synopsis: inversion sterm

Pre-conditions: The type of the term \mathbf{t} must be an inductive type or the application of an inductive type
Action: It proceeds by cases on \mathbf{t} paying attention to the constraints imposed by the actual "right arguments" of the inductive type.
New sequents to prove: It opens one new sequent to prove for each case in the definition of the type of \mathbf{t}. With respect to a simple elimination, each new sequent has additional hypotheses that states the equalities of the "right parameters" of the inductive type with terms originally present in the sequent to prove.

7.31 lapply

lapply linear depth=d t to t_{1}, \ldots, t_{n} as H
Synopsis: lapply [linear] [depth=nat] sterm [to sterm [,sterm...]] [as id]
Pre-conditions: \mathbf{t} must have at least \mathbf{d} independent premises and \mathbf{n} must not be greater than \mathbf{d}.
Action: Invokes letin $\mathbf{H} \stackrel{\text { def }}{=}(\mathbf{t} \boldsymbol{?} \ldots$?.. with enough ?'s to reach the \mathbf{d}-th independent premise of \mathbf{t} (\mathbf{d} is maximum if unspecified). Then istantiates (by apply) with t_{1}, \ldots, t_{n} the ?'s corresponding to the first \mathbf{n} independent premises of \mathbf{t}. Usually the other ?'s preceding the \mathbf{n}-th independent premise of \mathbf{t} are istantiated as a consequence. If the linear flag is specified and if $\mathbf{t}, \mathbf{t}_{\mathbf{1}}$, $\ldots, \mathbf{t}_{\mathbf{n}}$ are (applications of) premises in the current context, they are cleared.

New sequents to prove: The ones opened by the tactics lapply invokes.

7.32 left

left

Synopsis: left
Pre-conditions: The conclusion of the current sequent must be an inductive type or the application of an inductive type with at least one constructor.

Action: Equivalent to constructor 1.

New sequents to prove: It opens a new sequent for each premise of the first constructor of the inductive type that is the conclusion of the current sequent. For more details, see the constructor tactic.

7.33 letin

$\operatorname{letin} \mathbf{x} \stackrel{\text { def }}{=} t$
Synopsis: letin $i d \stackrel{\text { def }}{=}$ sterm
Pre-conditions: None.
Action: It adds to the context of the current sequent to prove a new definition $\mathbf{x} \stackrel{\text { def }}{=} \mathbf{t}$.
New sequents to prove: None.

7.34 normalize

normalize patt
Synopsis: normalize pattern
Pre-conditions: None.
Action: It replaces all the terms matched by patt with their $\beta \delta i \zeta$-normal form.
New sequents to prove: None.

7.35 reflexivity

reflexivity
Synopsis: reflexivity
Pre-conditions: The conclusion of the current sequent must be $\mathbf{t}=\mathbf{t}$ for some term \mathbf{t}
Action: It closes the current sequent by reflexivity of equality.
New sequents to prove: None.

7.36 replace

```
change patt with t
```

Synopsis: replace pattern with sterm

Pre-conditions: None.

Action: It replaces the subterms of the current sequent matched by patt with the new term \mathbf{t}. For each subterm matched by the pattern, \mathbf{t} is disambiguated in the context of the subterm.

New sequents to prove: For each matched term \mathbf{t}^{\prime} it opens a new sequent to prove whose conclusion is $\mathbf{t}^{\prime}=\mathbf{t}$.

7.37 rewrite

```
rewrite dir p patt
```

Synopsis: rewrite [<>>] sterm pattern
Pre-conditions: \mathbf{p} must be the proof of an equality, possibly under some hypotheses.
Action: It looks in every term matched by patt for all the occurrences of the left hand side of the equality that \mathbf{p} proves (resp. the right hand side if dir is <). Every occurence found is replaced with the opposite side of the equality.

New sequents to prove: It opens one new sequent for each hypothesis of the equality proved by \mathbf{p} that is not closed by unification.

7.38 right

right

Synopsis: right

Pre-conditions: The conclusion of the current sequent must be an inductive type or the application of an inductive type with at least two constructors.

Action: Equivalent to constructor 2.
New sequents to prove: It opens a new sequent for each premise of the second constructor of the inductive type that is the conclusion of the current sequent. For more details, see the constructor tactic.

7.39 ring

ring

Synopsis: ring

Pre-conditions: The conclusion of the current sequent must be an equality over Coq's real numbers that can be proved using the ring properties of the real numbers only.

Action: It closes the current sequent veryfying the equality by means of computation (i.e. this is a reflexive tactic, implemented exploiting the "two level reasoning" technique).

New sequents to prove: None.

7.40 simplify

simplify patt

Synopsis: simplify pattern

Pre-conditions: None.

Action: It replaces all the terms matched by patt with other convertible terms that are supposed to be simpler.
New sequents to prove: None.

7.41 split

split

Synopsis: split

Pre-conditions: The conclusion of the current sequent must be an inductive type or the application of an inductive type with at least one constructor.

Action: Equivalent to constructor 1.
New sequents to prove: It opens a new sequent for each premise of the first constructor of the inductive type that is the conclusion of the current sequent. For more details, see the constructor tactic.

7.42 subst

subst

Synopsis: subst

Pre-conditions: None.
Action: For each premise of the form $\mathbf{H}: \mathbf{x}=\mathbf{t}$ or $\mathbf{H}: \mathbf{t}=\mathbf{x}$ where \mathbf{x} is a local variable and \mathbf{t} does not depend on \mathbf{x}, the tactic rewrites \mathbf{H} wherever \mathbf{x} appears clearing \mathbf{H} and \mathbf{x} afterwards.

New sequents to prove: The one opened by the applied tactics.

7.43 symmetry

The tactic symmetry
symmetry

Synopsis: symmetry

Pre-conditions: The conclusion of the current proof must be an equality.
Action: It swaps the two sides of the equalityusing the symmetric property.
New sequents to prove: None.

7.44 transitivity

transitivity t

Synopsis: transitivity sterm

Pre-conditions: The conclusion of the current proof must be an equality.
Action: It closes the current sequent by transitivity of the equality.
New sequents to prove: It opens two new sequents $\mathbf{l}=\mathbf{t}$ and $\mathbf{t}=\mathbf{r}$ where \mathbf{l} and \mathbf{r} are the left and right hand side of the equality in the conclusion of the current sequent to prove.

7.45 unfold

```
unfold t patt
```

Synopsis: unfold [sterm] pattern
Pre-conditions: None.
Action: It finds all the occurrences of \mathbf{t} (possibly applied to arguments) in the subterms matched by patt. Then it δ-expands each occurrence, also performing β-reduction of the obtained term. If \mathbf{t} is omitted it defaults to each subterm matched by patt.

New sequents to prove: None.

7.46 whd

whd patt

Synopsis: whd pattern
Pre-conditions: None.
Action: It replaces all the terms matched by patt with their $\beta \delta_{l} \zeta$-weak-head normal form.
New sequents to prove: None.

Chapter 8

Declarative Tactics

8.1 Quick reference card

tactic	::=	assume id : sterm	
	।	by induction hypothesis we know term (id)	
	I	case id [(id $:$ term) $\ldots \ldots$	
	I	justification done	
	।	justification let id : term such that term (id)	
	1	[obtain id \mid conclude term] $=$ term [auto_params I using term \| using once term	proof] [done]
	1	suppose term (id) [that is equivalent to term]	
	I	the thesis becomes term	
	1	we need to prove term [(id)] [or equivalently term]	
	1	we proceed by cases on term to prove term	
	I	we proceed by induction on term to prove term	
	I	justification we proved term (id)	

Table 8.1: tactics

8.2 assume

assume x : t
Synopsis: assume id : sterm
Pre-conditions: The conclusion of the current proof must be $\forall \mathbf{x}: \mathbf{T} . \mathbf{P}$ or $\mathbf{T} \rightarrow \mathbf{P}$ where \mathbf{T} is a data type (i.e. \mathbf{T} has type Set or Type).
Action: It adds to the context of the current sequent to prove a new declaration \mathbf{x} : T. The new conclusion becomes \mathbf{P}.
New sequents to prove: None.

8.3 by induction hypothesis we know

by induction hypothesis we know t (id)
Synopsis: by induction hypothesis we know term (id)
Pre-condition: To be used in a proof by induction to state the inductive hypothesis.
Action: Introduces the inductive hypothesis.
New sequents to prove: None.

8.4 case

case id (id1:t1) ... (idn:tn)
Synopsis: case id [(id :term)]...
Pre-condition: To be used in a proof by induction or by cases to start a new case
Action: Starts the new case id declaring the local parameters (id1:t1) ... (idn:tn)
New sequents to prove: None

8.5 done

justification done
Synopsis: justification done

Pre-condition:

Action: It closes the current sequent given the justification.
New sequents to prove: None.

8.6 let such that

justification let $x: t$ such that p (id)
Synopsis: justification let id : term such that term (id)

Pre-condition:

Action: It derives $\exists \mathbf{x}: \mathbf{t} . \mathbf{p}$ using the justification and then it introduces in the context \mathbf{x} and the hypothesis \mathbf{p} labelled with id.
New sequent to prove: None.

8.7 obtain

obtain H t1 $=$ t2 justification
Synopsis: [obtain id | conclude term] = term [auto_params | using term | using once term | proof] [done]
Pre-condition: conclude can be used only if the current sequent is stating an equality. The left hand side must be omitted in an equality chain.

Action: Starts or continues an equality chain. If the chain starts with obtain \mathbf{H} a new subproof named \mathbf{H} is started.
New sequent to prove: If the chain starts with obtain \mathbf{H} a nre sequent for $\mathbf{t} \mathbf{2}=$? is opened.

8.8 suppose

```
suppose t1 (x) that is equivalent to t2
```

Synopsis: suppose term (id) [that is equivalent to term]
Pre-condition: The conclusion of the current proof must be $\forall \mathbf{x}: \mathbf{T} . \mathbf{P}$ or $\mathbf{T} \rightarrow \mathbf{P}$ where \mathbf{T} is a proposition (i.e. \mathbf{T} has type Prop or CProp).

Action: It adds to the context of the current sequent to prove a new declaration $\mathbf{x}: \mathbf{T}$. The new conclusion becomes \mathbf{P}.
New sequents to prove: None.

8.9 the thesis becomes

the thesis becomes t

Synopsis: the thesis becomes term
Pre-condition: The provided term \mathbf{t} must be convertible with current sequent.
Action: It changes the current goal to the one provided.
New sequent to prove: None.

8.10 we need to prove

```
we need to prove t1 (id) or equivalently t2
```

Synopsis: we need to prove term [(id)] [or equivalently term]

Pre-condition:

Action: If id is provided, starts a subproof that once concluded will be named id. Otherwise states what needs to be proved. If $\mathbf{t} \mathbf{2}$ is provided, the new goal is immediately changed to $\mathbf{t} \mathbf{2}$ wich must be equivalent to $\mathbf{t} \mathbf{1}$.

New sequents to prove: The stated one if id is provided

8.11 we have

justification we have t1 (id1) and t2 (id2)
Synopsis: justification we have term (id) and term (id)

Pre-condition:

Action: It derives $\mathbf{t} \mathbf{1} \wedge \mathbf{t} \mathbf{2}$ using the justification then it introduces in the context $\mathbf{t} \mathbf{1}$ labelled with id1 and $\mathbf{t} \mathbf{2}$ labelled with id2.
New sequent to prove: None.

8.12 we proceed by cases on

we proceed by cases on t to prove th
Synopsis: we proceed by cases on term to prove term
Pre-condition: \mathbf{t} must inhabitant of an inductive type and $\mathbf{t h}$ must be the conclusion to be proved by cases.
Action: It proceeds by cases on \mathbf{t}
New sequents to prove: It opens one new sequent for each constructor of the type of \mathbf{t}.

8.13 we proceed by induction on

we proceed by induction on t to prove th
Synopsis: we proceed by induction on term to prove term
Pre-condition: \mathbf{t} must inhabitant of an inductive type and th must be the conclusion to be proved by induction.
Action: It proceed by induction on \mathbf{t}.
New sequents to prove: It opens one new sequent for each constructor of the type of \mathbf{t}.

8.14 we proved

justification we proved t (id)
Synopsis: justification we proved term (id)
Pre-condition: tmust have type Prop.
Action: It derives \mathbf{t} using the justification and labels the conclusion with id.
New sequent to prove: None.

Chapter 9

Other commands

9.1 alias

alias id "s" = "def"
alias symbol "s" (instance n) = "def"
alias num (instance n) = "def"
Synopsis: alias $[\mathbf{i d}$ qstring $=$ qstring \mid symbol qstring $[(\mathbf{i n s t a n c e}$ nat $)]=$ qstring \mid num $[(\mathbf{i n s t a n c e}$ nat $)]=$ qstring $]$
Action: Used to give an hint to the disambiguating parser. When the parser is faced to the identifier (or symbol) s or to any number, it will prefer interpretations that "map s (or the number) to def". For identifiers, "def" is the URI of the interpretation. E.g.: cic:/matita/nat/nat.ind\#xpointer(1/1/1) for the first constructor of the first inductive type defined in the block of inductive type(s) cic:/matita/nat/nat.ind. For symbols and numbers, "def" is the label used to mark the wanted interpretation.
When a symbol or a number occurs several times in the term to be parsed, it is possible to give an hint only for the instance n. When the instance is omitted, the hint is valid for every occurrence.

Hints are automatically inserted in the script by Matita every time the user is interactively asked a question to disambiguate a term. This way the user won't be posed the same question twice when the script will be executed again.

9.2 check

check t

Synopsis: check term
Action: Opens a CIC browser window that shows \mathbf{t} together with its type. The command is immediately removed from the script.

9.3 eval

eval red on t
Synopsis: eval reduction-kind on term
Action: Opens a CIC browser window that shows the reduct of \mathbf{t} together with its type.

9.4 prefer coercion

```
prefer coercion u
```

Synopsis: prefer coercion (uri \mid term)
Action: The already declared coercion \mathbf{u} is preferred to other coercions with the same source and target.

9.5 coercion

```
coercion u with ariety saturation nocomposites
```

Synopsis: coercion (uri I term with) [nat [nat]] [nocomposites]
Action: Declares \mathbf{u} as an implicit coercion. If the type of \mathbf{u} is $\forall \mathbf{x} \mathbf{1}: \mathbf{T 1} \ldots \forall \mathbf{x}(\mathbf{n} \mathbf{- 1}): \mathbf{T}(\mathbf{n}-\mathbf{1})$. $\mathbf{T n}$ the coercion target is $\mathbf{T}(\mathbf{n}-\operatorname{ariet} \mathbf{y})$
while its source is $\mathbf{T}(\mathbf{n}$ - ariety - saturation-1). Every time a term \mathbf{x} of type source is used with expected type target, Matita automatically replaces \mathbf{x} with (u?.. ? $\mathbf{x} \boldsymbol{?} \ldots$?) to avoid a typing error. Note that the number of $\boldsymbol{?}$ added after \mathbf{x} is saturation.
Implicit coercions are not displayed to the user: (u ? $\ldots \mathbf{x}$) is rendered simply as \mathbf{x}.
When a coercion \mathbf{u} is declared from source \mathbf{s} to target \mathbf{t} and there is already a coercion \mathbf{u} ' of target \mathbf{s} or source \mathbf{t}, a composite implicit coercion is automatically computed by Matita unless nocomposites is specified.

9.6 default

```
default "s" ur _ .. un
```

Synopsis: default qstring uri [uri]...
Action: It registers a cluster of related definitions and theorems to be used by tactics and the rendering engine. Some functionalities of Matita are not available when some clusters have not been registered. Overloading a cluster registration is possible: the last registration will be the default one, but the previous ones are still in effect.
\mathbf{s} is an identifier of the cluster and $\mathbf{u}_{\mathbf{1}} \ldots \mathbf{u}_{\mathbf{n}}$ are the URIs of the definitions and theorems of the cluster. The number \mathbf{n} of required URIs depends on the cluster. The following clusters are supported.

9.7 hint

hint

Synopsis: hint

Action: Displays a list of theorems that can be successfully applied to the current selected sequent. The command is removed from the script, but the window that displays the theorems allow to add to the script the application of the selected theorem.

9.8 include

```
include "s"
```

Synopsis: include qstring
Action: Every coercion, notation and interpretation that was active when the file \mathbf{s} was compiled last time is made active. The same happens for declarations of default definitions and theorems and disambiguation hints (aliases). On the contrary, theorem and definitions declared in a file can be immediately used without including it.
The file \mathbf{s} is automatically compiled if it is not compiled yet.

name	expected object for 1st URI	expected object for 2nd URI	expected object for 3rd URI	expected object for 4th URI	expected object for 5th URI
equality	an inductive type (say, of type eq) of type \forall A:Type.A \rightarrow Prop with one family parameter and one constructor of type $\forall x$:A.eq A x	a theorem of type $\forall A . \forall x, y: A . e q ~ A$ $x y \rightarrow$ eq A y x	a theorem of type $\forall \mathrm{A} . \forall \mathrm{x}, \mathrm{y}, \mathrm{z}: \mathrm{A} . \mathrm{eq} \mathrm{A}$ $x y \rightarrow e q A y z$ \rightarrow eq Axz	$\forall \mathrm{A} . \forall \mathrm{a} . \forall \mathrm{P}: \mathrm{A} \rightarrow$ Prop.P $x \rightarrow$ \forall y.eq A x y \rightarrow P y	$\forall \mathrm{A} . \forall \mathrm{a} . \forall \mathrm{P}: \mathrm{A} \rightarrow$ Prop.P $x \rightarrow$ $\forall y . e q$ A $y x \rightarrow P$ y
true	an inductive type of type Prop with only one constructor that has no arguments				
false	an inductive type of type Prop without constructors				
absurd	$\begin{aligned} & \text { a theorem of type } \\ & \forall \mathrm{A}: \text { Prop. } \forall \mathrm{B}: \text { Prop.A } \\ & \rightarrow \operatorname{Not} \mathrm{A} \rightarrow \mathrm{~B} \end{aligned}$				

Table 9.1: clusters

9.9 include' "s"

Synopsis: include' qstring

Action: Not documented (TODO), do not use it.

9.10 whelp

```
whelp locate "s"
whelp hint t
whelp elim t
whelp match t
whelp instance t
```

Synopsis: whelp [locate qstring | hint term | elim term | match term | instance term]
Action: Performs the corresponding query, showing the result in the CIC browser. The command is removed from the script.

9.11 qed

qed

Synopsis: qed

Action: Saves and indexes the current interactive theorem or definition. In order to do this, the set of sequents still to be proved must be empty.

9.12 inline

inline "s" params

Synopsis: inline qstring inline_params

Action: Inlines a representation of the item s, which can be the URI of a HELM object. If an entire HELM directory (i.e. a base URI) or the path of a *.ma source file is provided, all the contained objects are represented in a row. If the inlined object has a proof, this proof is represented in several ways depending on the provided parameters.

9.12.1 inline-params

inline_params	$::=$	$[$ inline_param
		inline_param $\ldots]$

Table 9.2: inline-params

inline_param	::=	axiom	Try to give an axiom flavour (bodies are omitted even if present)
	I	definition	Try give a definition flavour
	I	theorem	Try give a theorem flavour
	I	lemma	Try give a lemma flavour
	I	remark	Try give a remark flavour
	I	fact	Try give a fact flavour
	1	variant	Try give a variant flavour (implies plain)
	1	declarative	Represent proofs using declarative tactics (this is the dafault and can be omitted)
	1	procedural	Represent proofs using procedural tactics
	1	plain	Represent proofs using plain proof terms
	1	nodefaults	Do not use the tactics depending on the default command (rewrite in the procedural mode)
	1	level=nat	Set the level of the procedural proof representation (the default is the highest level)
			- Tactics used at level 1 : exact
			- Additional tactics used at level 2: letin, cut, change, intros, apply, elim, cases, rewrite
	I	depth=nat	TODO

Table 9.3: inline-param

Chapter 10

License

Both Matita and this document are part of HELM, an Hypertextual, Electronic Library of Mathematics, developed at the Computer Science Department, University of Bologna, Italy.

HELM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

HELM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with HELM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. A copy of the GNU General Public License is available at this link.

