
Matita V0.99.5 User Manual (rev. 0.99.5)

Andrea Asperti, Claudio Sacerdoti Coen, Ferruccio Guidi, Enrico Tassi, and Stefano
Zacchiroli

Matita V0.99.5 User Manual (rev. 0.99.5) ii

Copyright © 2006 The HELM team.

Both Matita and this document are free software, you can redistribute them and/or modify them under the terms of the GNU
General Public License as published by the Free Software Foundation. See Chapter 10 for more information.

Matita V0.99.5 User Manual (rev. 0.99.5) iii

COLLABORATORS

TITLE :

Matita V0.99.5 User Manual (rev. 0.99.5)

ACTION NAME DATE SIGNATURE

WRITTEN BY Andrea Asperti,
Claudio Sacerdoti
Coen, Ferruccio

Guidi, Enrico Tassi,
and Stefano
Zacchiroli

January 3, 2023

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

0.99.5 12/07/2006

Matita V0.99.5 User Manual (rev. 0.99.5) iv

Contents

1 Introduction 1

1.1 Features . 1

1.2 Matita vs Coq . 1

2 Installation 3

2.1 Using the LiveCD . 3

2.1.1 Creating the virtual machine . 3

2.1.2 Sharing files with the real PC . 7

2.2 Installing from sources . 10

2.2.1 Getting the source code . 10

2.2.2 Requirements . 11

2.2.3 Compiling and installing . 11

3 Getting started 12

3.1 How to type Unicode symbols . 12

3.2 Browsing and searching . 12

3.2.1 Browsing the library . 12

3.2.2 Looking at a proof under development . 13

3.3 Authoring . 13

3.3.1 How to compile a script . 13

3.3.2 The authoring interface . 13

4 Syntax 14

4.1 Terms & co. 14

4.1.1 Lexical conventions . 14

4.1.2 Terms . 17

4.2 Definitions and declarations . 17

4.2.1 axiom . 17

4.2.2 definition . 17

4.2.3 discriminator . 17

4.2.4 inverter . 17

Matita V0.99.5 User Manual (rev. 0.99.5) v

4.2.5 TODO . 17

4.2.6 (co)inductive types declaration . 18

4.2.7 record . 18

4.3 Proofs . 18

4.3.1 theorem . 18

4.3.2 corollary . 18

4.3.3 lemma . 19

4.3.4 fact . 19

4.3.5 example . 19

4.4 Tactic arguments . 19

4.4.1 pattern . 19

4.4.2 reduction-kind . 20

4.4.3 auto-params . 20

4.4.4 justification . 20

5 Extending the syntax 22

5.1 notation . 22

5.2 interpretation . 25

6 Tacticals 26

6.1 Interactive proofs and definitions . 26

6.2 The proof status . 26

6.3 Tacticals . 27

7 Tactics 30

7.1 Quick reference card . 30

7.2 @ . 30

7.3 // . 31

7.4 # . 31

7.5 #_ . 31

7.6 ## . 31

7.7 - . 32

7.8 % . 32

7.9 * . 32

7.10 > . 32

7.11 applyS . 33

7.12 assumption . 33

7.13 cases . 33

7.14 change . 33

7.15 cut . 34

Matita V0.99.5 User Manual (rev. 0.99.5) vi

7.16 destruct . 34

7.17 elim . 34

7.18 generalize . 35

7.19 inversion . 35

7.20 lapply . 35

7.21 letin . 35

7.22 normalize . 36

7.23 whd . 36

8 Declarative Tactics 37

8.1 Quick reference card . 37

8.2 assume . 37

8.3 suppose . 38

8.4 letin . 38

8.5 that is equivalent to . 38

8.6 the thesis becomes . 38

8.7 we need to prove . 39

8.8 we proved . 39

8.9 let such that . 39

8.10 we have . 39

8.11 we proceed by induction on . 40

8.12 we proceed by cases on . 40

8.13 case . 40

8.14 by induction hypothesis we know . 40

8.15 conclude . 41

8.16 obtain . 41

8.17 = . 41

8.18 done . 41

9 Other commands 42

9.1 alias . 42

9.2 check . 42

9.3 coercion . 42

9.4 include . 43

9.5 include alias . 43

9.6 qed . 43

9.7 qed- . 44

9.8 unification hint . 44

9.9 universe constraint . 44

10 License 45

Matita V0.99.5 User Manual (rev. 0.99.5) vii

List of Figures

2.1 The brand new virtual machine . 4

2.2 Mounting an ISO image . 5

2.3 Choosing the ISO image . 6

2.4 Choosing the ISO image . 7

2.5 Set up a shared folder . 8

2.6 Choosing the folder to share . 9

2.7 Naming the shared folder . 9

2.8 Using it from the virtual machine . 10

Matita V0.99.5 User Manual (rev. 0.99.5) viii

List of Tables

4.1 qstring . 14

4.2 id . 14

4.3 nat . 15

4.4 char . 15

4.5 uri-step . 15

4.6 uri . 15

4.7 csymbol . 15

4.8 symbol . 15

4.9 Terms . 15

4.10 Simple terms . 16

4.11 Arguments . 16

4.12 Pattern matching . 16

4.13 pattern . 19

4.14 path . 19

4.15 reduction-kind . 20

4.16 auto-params . 21

4.17 simple-auto-param . 21

4.18 justification . 21

5.1 usage . 22

5.2 associativity . 22

5.3 notation_rhs . 22

5.4 unparsed_ast . 23

5.5 enriched_term . 23

5.6 unparsed_meta . 23

5.7 level2_meta . 23

5.8 notation_lhs . 23

5.9 layout . 24

5.10 literal . 24

5.11 interpretation_argument . 25

Matita V0.99.5 User Manual (rev. 0.99.5) ix

5.12 interpretation_rhs . 25

6.1 proof script . 27

6.2 proof steps . 28

6.3 tactics and LCF tacticals . 29

7.1 tactics . 30

8.1 tactics . 37

Matita V0.99.5 User Manual (rev. 0.99.5) 1 / 45

Chapter 1

Introduction

1.1 Features

Matita is an interactive theorem prover (or proof assistant) with the following characteristics:

• It is based on a variant of the Calculus of (Co)Inductive Constructions (CIC). CIC is also the logic of the Coq proof assistant.

• It adopts a procedural proof language, but it has a new set of small step tacticals that improve proof structuring and debugging.

• It has a stand-alone graphical user interface (GUI) inspired by CtCoq/Proof General. The GUI is implemented according to
the state of the art. In particular:

– It is based and fully integrated with Gtk/Gnome.

– An on-line help can be browsed via the Gnome documentation browser.

– Mathematical formulae are rendered via Unicode.

• It allows the use of the typical ambiguous mathematical notation by means of a disambiguating parser.

1.2 Matita vs Coq

The system shares a common look&feel with the Coq proof assistant and its graphical user interface. The two systems have
variants of the same logic, close proof languages and similar sets of tactics. From the user point of view the main lacking features
with respect to Coq are:

• proof extraction;

• an extensible language of tactics;

• automatic implicit arguments;

• several ad-hoc decision procedures;

• several rarely used variants for most of the tactics;

• sections and local variables.

Still from the user point of view, the main differences with respect to Coq are:

• the language of tacticals that allows execution of partial tactical application;

• the unification of the concept of metavariable and existential variable;

Matita V0.99.5 User Manual (rev. 0.99.5) 2 / 45

• terms with subterms that cannot be inferred are always allowed as arguments of tactics or other commands;

• ambiguous terms are disambiguated by direct interaction with the user;

• theorems and definitions in the library are always accessible without needing to require/include them; right now, only notation
needs to be included to become active, but we plan to remove this limitation.

Matita V0.99.5 User Manual (rev. 0.99.5) 3 / 45

Chapter 2

Installation

Matita is a quite complex piece of software, we thus recommend you to either install al precompiled version or use the LiveCD.
If you are running Debian GNU/Linux (or one of its derivatives like Ubuntu), you can install matita typing

aptitude install matita matita-standard-library

If you are running MacOSX or Windows, give the LiveCD a try before trying to compile Matita from its sources.

2.1 Using the LiveCD

In the following, we will assume you have installed virtualbox for your platform and downloaded the .iso image of the LiveCD

2.1.1 Creating the virtual machine

Click on the New button, a wizard will popup, you should ask to its questions as follows

1. The name should be something like Matita, but can be any meaningful string.

2. The OS type should be Debian

3. The base memory size can be 256 mega bytes, but you may want to increase it if you are going to work with huge
formalizations.

4. The boot hard disk should be no hard disk. It may complain that this choice is not common, but it is right, since you will
run a LiveCD you do not need to emulate an hard drive.

Now that you are done with the creation of the virtual machine, you need to insert the LiveCD in the virtual cd reader unit.

http://www.virtualbox.org

Matita V0.99.5 User Manual (rev. 0.99.5) 4 / 45

Figure 2.1: The brand new virtual machine

Click on CD/DVD-ROM (that should display something like: Not mouted). Then click on mount CD/DVD drive and select the
ISO image option. The combo-box should display no available image, you need to add the ISO image you downloaded from the
Matita website clicking on the button near the combo-box. to start the virtual machine.

Matita V0.99.5 User Manual (rev. 0.99.5) 5 / 45

Figure 2.2: Mounting an ISO image

In the newely opened window click the Add button

Matita V0.99.5 User Manual (rev. 0.99.5) 6 / 45

Figure 2.3: Choosing the ISO image

A new windows will pop-up: choose the file you downloaded (usually matita-version.iso) and click open.

Matita V0.99.5 User Manual (rev. 0.99.5) 7 / 45

Figure 2.4: Choosing the ISO image

Now select the new entry you just added as the CD image you want to insert in the virtual CD drive. You are now ready to start
the virtual machine.

2.1.2 Sharing files with the real PC

The virtual machine Matita will run on, has its own file system, that is completely separated from the one of your real PC (thus
your files are not available in the emulated environment) and moreover it is a non-presistent file system (thus you data is lost
every time you turn off the virtual machine).

Virtualbox allows you to share a real folder (beloging to your real PC) with the emulated computer. Since this folder is persistent,
you are encouraged to put your work there, so that it is not lost when the virtual machine is powered off.

The first step to set up a shared folder is to click on the shared folder configuration entry of the virtual machine.

Matita V0.99.5 User Manual (rev. 0.99.5) 8 / 45

Figure 2.5: Set up a shared folder

Then you shuld add a shared folder clicking on the plus icon on the right

Matita V0.99.5 User Manual (rev. 0.99.5) 9 / 45

Figure 2.6: Choosing the folder to share

Then you have to specify the real PC folder you want to share and name it. A reasonable folder to share is /home on a standard
Unix system, while /Users on MaxOSX. The name you give to the share is important, you should remember it.

Figure 2.7: Naming the shared folder

Once your virtual machine is up and running, you can mount (that meand have access to) the shared folder by clicking on the
Mount VirtualBox share icon, and typing the name of the share.

Matita V0.99.5 User Manual (rev. 0.99.5) 10 / 45

Figure 2.8: Using it from the virtual machine

A window will then pop-up, and its content will be the the content of the real PC folder.

2.2 Installing from sources

Install Matita from the sources is hard, you have been warned!

2.2.1 Getting the source code

You can get the Matita source code in two ways:

1. go to the download page and get the latest released source tarball;

2. get the development sources from our SVN repository. You will need the components/ and matita/ directories from the
trunk/helm/software/ directory, plus the configure and Makefile* stuff from the same directory.

In this case you will need to run autoconf before proceding with the building instructions below.

http://matita.cs.unibo.it/download.shtml
http://matita.cs.unibo.it/sources/matita-latest.tar.gz
http://helm.cs.unibo.it/websvn/listing.php?repname=helm&path=%2F&sc=0

Matita V0.99.5 User Manual (rev. 0.99.5) 11 / 45

2.2.2 Requirements

In order to build Matita from sources you will need some tools and libraries. They are listed below.

Note for Debian (and derivatives) users
If you are running a Debian GNU/Linux distribution, or any of its derivative like Ubuntu, you can use APT to install all the
required tools and libraries since they are all part of the Debian archive.
apt-get install ocaml ocaml-findlib libgdome2-ocaml-dev liblablgtk2-ocaml-dev liblablgtkmathview-ocaml-dev
liblablgtksourceview-ocaml-dev libsqlite3-ocaml-dev libocamlnet-ocaml-dev libzip-ocaml-dev libhttp-ocaml-dev ocaml-ulex08
libexpat-ocaml-dev libmysql-ocaml-dev camlp5
An official debian package is going to be added to the archive too.

REQUIRED TOOLS AND LIBRARIES

OCaml the Objective Caml compiler, version 3.09 or above

Findlib OCaml package manager, version 1.1.1 or above

OCaml Expat OCaml bindings for the expat library

LablGTK OCaml bindings for the GTK+ library , version 2.6.0 or above

GtkSourceView , LablGtkSourceView extension for the GTK+ text widget (adding the typical features of source code edi-
tors) and its OCaml bindings

Ocamlnet collection of OCaml libraries to deal with application-level Internet protocols and conventions

ulex Unicode lexer generator for OCaml

CamlZip OCaml library to access .gz files

2.2.3 Compiling and installing

Once you get the source code the installations steps should be quite familiar.

First of all you need to configure the build process executing ./configure. This will check that all needed tools and library
are installed and prepare the sources for compilation and installation.

Quite a few (optional) arguments may be passed to the configure command line to change build time parameters. They are listed
below, together with their default values:

CONFIGURE COMMAND LINE ARGUMENTS

--with-runtime-dir=dir (Default: /usr/local/matita) Runtime base directory where all Matita stuff (executa-
bles, configuration files, standard library, ...) will be installed

--enable-debug (Default: disabled) Enable debugging code. Not for the casual user.

Then you will manage the build and install process using make as usual. Below are reported the targets you have to invoke in
sequence to build and install:

MAKE TARGETS

world builds components needed by Matita and Matita itself (in bytecode or native code depending on the availability of the
OCaml native code compiler)

install installs Matita related tools, standard library and the needed runtime stuff in the proper places on the filesystem.

http://www.debian.org
http://ubuntu.com
http://caml.inria.fr
http://www.ocaml-programming.de/packages/
http://www.xs4all.nl/~mmzeeman/ocaml/
http://expat.sourceforge.net/
http://wwwfun.kurims.kyoto-u.ac.jp/soft/lsl/lablgtk.html
http://www.gtk.org
http://gtksourceview.sourceforge.net/
http://helm.cs.unibo.it/software/lablgtksourceview/
http://ocamlnet.sourceforge.net/
http://www.cduce.org/download.html
http://cristal.inria.fr/~xleroy/software.html
http://www.gnu.org/software/make/

Matita V0.99.5 User Manual (rev. 0.99.5) 12 / 45

Chapter 3

Getting started

If you are already familiar with the Calculus of (Co)Inductive Constructions (CIC) and with interactive theorem provers with
procedural proof languages (expecially Coq), getting started with Matita is relatively easy. You just need to learn how to type
Unicode symbols, how to browse and search the library and how to author a proof script.

3.1 How to type Unicode symbols

Unicode characters can be typed in several ways:

• Using the "Ctrl+Shift+Unicode code" standard Gnome shortcut. E.g. Ctrl+Shift+3a9 generates "Ω".

• Typing the ligature "\name" where "name" is a standard Unicode or LaTeX name for the character or an ASCII art resembling
the shape of the character. Pressing "Alt+L" or Space or Enter just after the last character of the name converts the ligature to
the Unicode symbol. E.g. "\Delta" followed by Alt+L generates "∆", while pressing Alt-L after "=>" generates "⇒"

• Typing a symbol and rotating trough its equivalence class with Alt-L. E.g. pressing Alt-L after an "l" generates a "λ ", while
pressing Alt-L after an "→" once generates "⇒" and pressing Alt-L again generates "⇒".

The comprehensive list of symbols names or shortcuts and their equivalence classes is available clicking on the "TeX/UTF-8
table" item of the "View" menu.

There is a memory mechanism related to equivalence classes that remembers your last choice, making it the default one. For
example, if you use "_" to generate "⎻" (that is the third choice, after "⎽" and "⎼"), the next time you
type Alt-L after "_" you immediately get "⎻".

3.2 Browsing and searching

The CIC browser is used to browse and search the library. You can open a new CIC browser selecting "New Cic Browser" from
the "View" menu of Matita, or by pressing "F3". The CIC browser is similar to a traditional Web browser.

3.2.1 Browsing the library

To browse the library, type in the location bar the absolute URI of the theorem, definition or library fragment you are interested
in. "cic:/" is the root of the library. Contributions developed in Matita are under "cic:/matita"; all the others are part of the library
of Coq.

Following the hyperlinks it is possible to navigate in the Web of mathematical notions. Proof are rendered in pseudo-natural
language and mathematical notation is used for formulae. For now, mathematical notation must be included in the current script
to be activated, but we plan to remove this limitation.

Matita V0.99.5 User Manual (rev. 0.99.5) 13 / 45

3.2.2 Looking at a proof under development

A proof under development is not yet part of the library. The special URI "about:proof" can be used to browse the proof currently
under development, if there is one. The "home" button of the CIC browser sets the location bar to "about:proof".

3.3 Authoring

3.3.1 How to compile a script

Scripts are compiled to base URIs. Base URIs are of the form "cic:/matita/path" and are given once for all for a set of scripts
using the "root" file.

A "root" file has to be placed in the root of a script set, for example, consider the following files and directories, and assume you
keep files in "list" separated from files in "sort" (for example the former directory may contain functions and proofs about lists,
while latter sorting algorithms for lists):

list/
list.ma (* depending just on the standard library *)
utils/

swap.ma (* including list.ma *)
sort/
qsort.ma (* including utils/swap.ma *)

To be able to compile properly the contents of "list" a file called root has to be placed in it. The file should be like the following
snippet.

baseuri=cic:/matita/mydatastructures

This file tells Matita that objects generated by "list.ma" have to be placed in "cic:/matita/mydatastructures/list" while objects
generated by "swap.ma" have to be placed in "cic:/matita/mydatastructures/utils/swap".

Once you created the root file, you must generate a depend file. Enter the "list" directory (the root of yuor file set) and type
"matitadep". Remember to regenerate the depend file every time you alter the dependencies of your files (for example including
other scripts). You can now compile you files typing "matitac".

To compile the "sort" directory, create a root file in "sort/" like the following one and then run "matitadep".

baseuri=cic:/matita/myalgorithms
include_paths=../list

The include_paths field can declare a list of paths separated by space. Please omit any "/" from the end of base URIs or paths.

3.3.2 The authoring interface

TODO

Matita V0.99.5 User Manual (rev. 0.99.5) 14 / 45

Chapter 4

Syntax

To describe syntax in this manual we use the following conventions:

1. Non terminal symbols are emphasized and have a link to their definition. E.g.: term

2. Terminal symbols are in bold. E.g.: theorem

3. Optional sequences of elements are put in square brackets. E.g.: [in term]

4. Alternatives are put in square brakets and they are separated by vertical bars. E.g.: [<|>]

5. Repetitions of a sequence of elements are given by putting the sequence in square brackets, that are followed by three dots.
The empty sequence is a valid repetition. E.g.: [and term]. . .

6. Characters belonging to a set of characters are given by listing the set elements in square brackets. Hyphens are used to
specify ranges of characters in the set. E.g.: [a-zA-Z0-9_-]

4.1 Terms & co.

4.1.1 Lexical conventions

qstring ::= "⟨⟨any sequence of
characters excluded "⟩⟩"

Table 4.1: qstring

id ::=

⟨⟨any sequence of letters,
underscores or valid XML
digits prefixed by a latin
letter ([a-zA-Z]) and
post-fixed by a possible
empty sequence of
decorators ([?’`])⟩⟩

Table 4.2: id

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Digit
http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Digit

Matita V0.99.5 User Manual (rev. 0.99.5) 15 / 45

nat ::= ⟨⟨any sequence of valid
XML digits⟩⟩

Table 4.3: nat

char ::= [a-zA-Z0-9_-]

Table 4.4: char

uri-step ::= char[char]. . .

Table 4.5: uri-step

uri ::= [cic:/|theory:/]uri-step[/uri-
step]. . . .id[.id]. . . [#xpointer(nat/nat[/nat]. . .)]

Table 4.6: uri

csymbol ::= ’id

Table 4.7: csymbol

symbol ::= ⟨⟨None of the above⟩⟩

Table 4.8: symbol

term ::= sterm simple or delimited term
| term term application
| λargs.term λ -abstraction

| Πargs.term
dependent product meant to
define a datatype

| ∀args.term
dependent product meant to
define a proposition

| term → term
non-dependent product
(logical implication or
function space)

| let [id|(id: term)]
de f
= term

in term
local definition

| let [co]rec rec_def (co)recursive definitions
[and rec_def]. . .
in term

| . . . user provided notation

rec_def ::= id [id|_|(id[,id]. . .
:term)]. . .

[on id] [: term]
de f
= term]

Table 4.9: Terms

http://www.w3.org/TR/2004/REC-xml-20040204/#NT-Digit

Matita V0.99.5 User Manual (rev. 0.99.5) 16 / 45

sterm ::= (term)

| id[\subst[id:=term
[;id:=term]. . .]]

identifier with optional
explicit named substitution

| uri a qualified reference

| Prop the impredicative sort of
propositions

| Set the impredicate sort of
datatypes

| CProp one fixed predicative sort of
constructive propositions

| Type one predicative sort of
datatypes

| ? implicit argument
| ?n [[[_|term]. . .]] metavariable

| match term [in id] [
return term] with case analysis

[
match_branch[|match_branch]. . .
]

| (term:term) cast

| . . . user provided notation at
precedence 90

Table 4.10: Simple terms

args ::= _[: term] ignored argument
| (_[: term]) ignored argument
| id[,id]. . . [: term]
| (id[,id]. . . [: term])

args2 ::= id
| (id[,id]. . . : term)

Table 4.11: Arguments

match_branch ::= match_pattern ⇒ term
match_pattern ::= id 0-ary constructor

| (id id [id]. . .) n-ary constructor (binds the
n arguments)

| id id [id]. . . n-ary constructor (binds the
n arguments)

| _ any remaining constructor
(ignoring its arguments)

Table 4.12: Pattern matching

Matita V0.99.5 User Manual (rev. 0.99.5) 17 / 45

4.1.2 Terms

4.2 Definitions and declarations

4.2.1 axiom id: term

axiom H: P

H is declared as an axiom that states P

4.2.2 definition id[: term] [
de f
= term]

definition f: T
de f
= t

f is defined as t; T is its type. An error is raised if the type of t is not convertible to T.

T is inferred from t if omitted.

t can be omitted only if T is given. In this case Matita enters in interactive mode and f must be defined by means of tactics.

Notice that the command is equivalent to theorem f: T de f
= t.

4.2.3 discriminator id

discriminator i

Defines a new discrimination (injectivity+conflict) principle à la McBride for the inductive type i.

The principle will use John Major’s equality if such equality is defined, otherwise it will use Leibniz equality; in the former case,
it will be called i_jmdiscr, in the latter, i_discr. The command will fail if neither equality is available.

Discrimination principles are used by the destruct tactic and are usually automatically generated by Matita during the definition
of the corresponding inductive type. This command is thus especially useful when the correct equality was not loaded at the time
of that definition.

4.2.4 inverter id for id (path) [term]

inverter n for i (path) : s

Defines a new induction/inversion principle for the inductive type i, called n.

(path) must be in the form (# # # ... #), where each # can be either ? or %, and the number of symbols is equal to the number
of right parameters (indices) of i. Parentheses are mandatory. If the j-th symbol is %, Matita will generate a principle providing
equations for reasoning on the j-th index of i. If the symbol is a ?, no corresponding equation will be provided.

s, which must be a sort, is the target sort of the induction/inversion principle and defaults to Prop.

4.2.5 letrec TODO

TODO

Matita V0.99.5 User Manual (rev. 0.99.5) 18 / 45

4.2.6 [inductive|coinductive] id [args2]. . . : term
de f
= [|] [id:term] [| id:term]. . . [with id : term

de f
= [|]

[id:term] [| id:term]. . .]. . .

inductive i x y z: S
de f
= k1:T1 | ... | kn:Tn with i’ : S’

de f
= k1’:T1’ | ... | km’:Tm’

Declares a family of two mutually inductive types i and i’ whose types are S and S’, which must be convertible to sorts.

The constructors ki of type Ti and ki’ of type Ti’ are also simultaneously declared. The declared types i and i’ may occur in the
types of the constructors, but only in strongly positive positions according to the rules of the calculus.

The whole family is parameterized over the arguments x,y,z.

If the keyword coinductive is used, the declared types are considered mutually coinductive.

Elimination principles for the record are automatically generated by Matita, if allowed by the typing rules of the calculus accord-
ing to the sort S. If generated, they are named i_ind, i_rec and i_rect according to the sort of their induction predicate.

4.2.7 record id [args2]. . . : term
de f
= {[id [:|:>] term] [;id [:|:>] term]. . . }

record id x y z: S
de f
= { f1: T1; ...; fn:Tn }

Declares a new record family id parameterized over x,y,z.

S is the type of the record and it must be convertible to a sort.

Each field fi is declared by giving its type Ti. A record without any field is admitted.

Elimination principles for the record are automatically generated by Matita, if allowed by the typing rules of the calculus accord-
ing to the sort S. If generated, they are named i_ind, i_rec and i_rect according to the sort of their induction predicate.

For each field fi a record projection fi is also automatically generated if projection is allowed by the typing rules of the calculus
according to the sort S, the type T1 and the definability of depending record projections.

If the type of a field is declared with :>, the corresponding record projection becomes an implicit coercion. This is just syntactic
sugar and it has the same effect of declaring the record projection as a coercion later on.

4.3 Proofs

4.3.1 theorem id[: term] [
de f
= term]

theorem f: P
de f
= p

Proves a new theorem f whose thesis is P.

If p is provided, it must be a proof term for P. Otherwise an interactive proof is started.

P can be omitted only if the proof is not interactive.

A warning is raised if the name of the theorem cannot be obtained by mangling the name of the constants in its thesis.

Notice that the command is equivalent to definition f: T de f
= t.

4.3.2 corollary id[: term] [
de f
= term]

corollary f: T
de f
= t

Same as theorem f: T de f
= t

Matita V0.99.5 User Manual (rev. 0.99.5) 19 / 45

4.3.3 lemma id[: term] [
de f
= term]

lemma f: T
de f
= t

Same as theorem f: T de f
= t

4.3.4 fact id[: term] [
de f
= term]

fact f: T
de f
= t

Same as theorem f: T de f
= t

4.3.5 example id[: term] [
de f
= term]

example f: T
de f
= t

Same as theorem f: T de f
= t, but the example is not indexed nor used by automation.

4.4 Tactic arguments

This section documents the syntax of some recurring arguments for tactics.

4.4.1 pattern

pattern ::= in [id[: path]]. . . [⊢ path]]; simple pattern

| in match path [in [id[:
path]]. . . [⊢ path]]; full pattern

Table 4.13: pattern

path ::=

⟨⟨any sterm without occurrences of
Set, Prop, CProp, Type, id, uri and
user provided notation; however, % is
now an additional production for
sterm⟩⟩

Table 4.14: path

A path locates zero or more subterms of a given term by mimicking the term structure up to:

1. Occurrences of the subterms to locate that are represented by %.

2. Subterms without any occurrence of subterms to locate that can be represented by ?.

Warning: the format for a path for a match . . . with expression is restricted to: match path with [_ ⇒ path | . . . | _ ⇒ path]
Its semantics is the following: the n-th "_ ⇒ path" branch is matched against the n-th constructor of the inductive data type. The
head λ -abstractions of path are matched against the corresponding constructor arguments.

For instance, the path ∀_,_:?.(? ? % ?)→(? ? ? %) locates at once the subterms x+y and x*y in the term
∀x,y:nat.x+y=1→0=x*y (where the notation A=B hides the term (eq T A B) for some type T).

Matita V0.99.5 User Manual (rev. 0.99.5) 20 / 45

A simple pattern extends paths to locate subterms in a whole sequent. In particular, the pattern { H: p K: q ⊢ r } locates
at once all the subterms located by the pattern r in the conclusion of the sequent and by the patterns p and q in the hypotheses H
and K of the sequent.

If no list of hypotheses is provided in a simple pattern, no subterm is selected in the hypothesis. If the ⊢ p part of the pattern is
not provided, no subterm will be matched in the conclusion if at least one hypothesis is provided; otherwise the whole conclusion
is selected.

Finally, a full pattern is interpreted in three steps. In the first step the match T in part is ignored and a set S of subterms is
located as for the case of simple patterns. In the second step the term T is parsed and interpreted in the context of each subterm s
∈ S. In the last term for each s ∈ S the interpreted term T computed in the previous step is looked for. The final set of subterms
located by the full pattern is the set of occurrences of the interpreted T in the subterms s.

A full pattern can always be replaced by a simple pattern, often at the cost of increased verbosity or decreased readability.

Example: the pattern { match x+y in ⊢ ∀_,_:?.(? ? % ?) } locates only the first occurrence of x+y in the se-
quent x,y: nat ⊢ ∀z,w:nat. (x+y) * (z+w) = z * (x+y) + w * (x+y). The corresponding simple pat-
tern is { ⊢ ∀_,_:?.(? ? (? % ?) ?) }.

Every tactic that acts on subterms of the selected sequents have a pattern argument for uniformity. To automatically generate a
simple pattern:

1. Select in the current goal the subterms to pass to the tactic by using the mouse. In order to perform a multiple selection of
subterms, hold the Ctrl key while selecting every subterm after the first one.

2. From the contextual menu select "Copy".

3. From the "Edit" or the contextual menu select "Paste as pattern"

4.4.2 reduction-kind

Reduction kinds are normalization functions that transform a term to a convertible but simpler one. Each reduction kind can be
used both as a tactic argument and as a stand-alone tactic.

reduction-kind ::= normalize [nodelta]

Computes the βδιζ -normal
form. If nodelta is
specified, δ -expansions are
not performed.

| whd [nodelta]

Computes the
βδιζ -weak-head normal
form. If nodelta is
specified, δ -expansions are
not performed.

Table 4.15: reduction-kind

4.4.3 auto-params

4.4.4 justification

Matita V0.99.5 User Manual (rev. 0.99.5) 21 / 45

auto_params ::=
[nat]
[simple_auto_param]. . .
[by [sterm. . . | _]]

The natural number, which
defaults to 1, gives a bound
to the depth of the search
tree. The terms listed is the
only knowledge base used
by automation together with
all indexed factual and
equational theorems in the
included library. If the list
of terms is empty, only
equational theorems and
facts in the library are used.
If the list is omitted, it
defaults to all indexed
theorems in the library.
Finally, if the list is _, the
automation command
becomes a macro that is
expanded in a new
automation command
where _ is replaced with the
list of theorems required to
prove the sequent.

Table 4.16: auto-params

simple_auto_param ::= width=nat The maximal width of the
search tree

| size=nat The maximal number of
nodes in the proof

| demod

Simplifies the current
sequent using the current
set of equations known to
automation

| paramod
Try to close the goal
performing unit-equality
paramodulation

| fast_paramod
A bounded version of
paramod that is granted to
terminate quickly

Table 4.17: simple-auto-param

justification ::= using term
Proof term manually
provided

| auto_params Call automation

Table 4.18: justification

Matita V0.99.5 User Manual (rev. 0.99.5) 22 / 45

Chapter 5

Extending the syntax

5.1 notation

notation usage "presentation" associativity with precedence p for content

Synopsis: notation [usage] "notation_lhs" [associativity] with precedence nat for notation_rhs

Action: Declares a mapping between the presentation AST presentation and the content AST content. The declared presen-
tation AST fragment presentation is at precedence level p. The precedence level is used to determine where parentheses
must be inserted. In particular, the content AST fragment content is actually a pattern, since it contains placeholders (vari-
ables) for sub-ASTs. Every placeholder for a term is given an expected precedence level. Parentheses must be inserted
around sub-ASTs having a precedence level strictly smaller than the expected one.

If presentation describes a binary infix operator and if no precedence level is explicitly given for the operator arguments, an
associativity declaration can be given to automatically choose the right level for the operands. Otherwise, no associativity
can be given.

If direction is omitted, the mapping is bi-directional and is used both during parsing and pretty-printing of terms. If
direction is >, the mapping is used only during parsing; if it is <, it is used only during pretty-printing. Thus it is possible
to use simple notations to type for writing the term, and nicer ones for rendering it.

Notation arguments:
usage ::= < Only for pretty-printing

| > Only for parsing

Table 5.1: usage

associativity ::= left associative Left associative
| right associative Right associative
| non associative Non associative (default)

Table 5.2: associativity

notation_rhs ::= unparsed_ast TODO
| unparsed_meta TODO

Table 5.3: notation_rhs

Matita V0.99.5 User Manual (rev. 0.99.5) 23 / 45

unparsed_ast ::= @{enriched_term}
A content level AST (a term
which is parsed, but not
disambiguated).

| @id
@id is just an abbreviation
for @{id}

| @csymbol
@’symbol is just an
abbreviation for
@{’symbol}

Table 5.4: unparsed_ast

enriched_term ::=

⟨⟨A term that may contain
occurrences of
unparsed_meta, even as
variable names in binders,
and occurrences of
csymbol⟩⟩

TODO

Table 5.5: enriched_term

unparsed_meta ::= ${level2_meta} TODO

| $id
$id is just an abbreviation
for ${id}

| $_ $_ is just an abbreviation
for ${_}

Table 5.6: unparsed_meta

level2_meta ::= unparsed_ast TODO
| term nat id TODO
| number id TODO
| ident id TODO
| fresh id TODO
| anonymous TODO
| id TODO

| fold [left|right] level2_meta
rec id level2_meta

TODO

| default level2_meta
level2_meta

TODO

|
if level2_meta then
level2_meta else
level2_meta

TODO

| fail TODO

Table 5.7: level2_meta

notation_lhs ::= layout [layout]. . .

Table 5.8: notation_lhs

Matita V0.99.5 User Manual (rev. 0.99.5) 24 / 45

layout ::= layout \sub layout Subscript
| layout \sup layout Superscript
| layout \below layout
| layout \above layout
| layout \over layout
| layout \atop layout
| layout \frac layout Fraction

| \infrule layout layout
layout

Inference rule (premises,
conclusion, rule name)

| \sqrt layout Square root
| \root layout \of layout Generalized root
| hbox (layout [layout]. . .) Horizontal box
| vbox (layout [layout]. . .) Vertical box
| hvbox (layout [layout]. . .) Horizontal and vertical box

| hovbox (layout [layout]. . .
) Horizontal or vertical box

| break Breakable space
| (layout [layout]. . .) Group

| id
Placeholder for a term with
no explicit precedence

| term nat id
Placeholder for a term with
explicit expected
precedence

| number id
Placeholder for a natural
number

| ident id Placeholder for an identifier
| literal Literal

| opt layout
Optional layout (it can be
omitted for parsing)

| list0 layout [sep literal] List of layouts separated by
sep (default: any blank)

| list1 layout [sep literal]
Non empty list of layouts
separated by sep (default:
any blank)

| mstyle id value (layout) Style attributes like color
#ff0000

| mpadded id value (layout) padding attributes like
width -150%

| maction (layout) [(layout)
. . .]

Alternative notations
(output only)

Table 5.9: layout

literal ::= symbol Unicode symbol
| nat Natural number (a constant)
| ’id’ New keyword for the lexer

Table 5.10: literal

Matita V0.99.5 User Manual (rev. 0.99.5) 25 / 45

5.2 interpretation

interpretation "description" ’symbol p1 ... pn = rhs

Synopsis: interpretation qstring csymbol [interpretation_argument]. . . = interpretation_rhs

Action: It declares a bi-directional mapping {. . . } between the content-level AST ’symbol t1 . . . tn and the semantic term
rhs[{t1}/p1;. . . ;{tn}/pn] (the simultaneous substitution in rhs of the interpretation {. . . } of every content-level actual argu-
ment ti for its corresponding formal parameter pi). The description must be a textual description of the meaning associated
to ’symbol by this interpretation, and is used by the user interface of Matita to provide feedback on the interpretation of
ambiguous terms.

Interpretation arguments:

interpretation_argument ::= [η .]. . . id

A formal parameter. If the
name of the formal
parameter is prefixed by n
symbols "η", then the
mapping performs
(multiple) η-expansions to
grant that the semantic
actual parameter begins
with at least n
λ -abstractions.

Table 5.11: interpretation_argument

interpretation_rhs ::= uri
A constant, specified by its
URI

| id

A constant, specified by its
name, or a bound variable.
If the constant name is
ambiguous, the one
corresponding to the last
implicitly or explicitly
specified alias is used.

| ? An implicit parameter

| (interpretation_rhs
[interpretation_rhs]. . .) An application

Table 5.12: interpretation_rhs

Matita V0.99.5 User Manual (rev. 0.99.5) 26 / 45

Chapter 6

Tacticals

6.1 Interactive proofs and definitions

An interactive definition is started by giving a definition command omitting the definiens. An interactive proof is started by using
one of the proof commands omitting an explicit proof term.

An interactive proof or definition can and must be terminated by a qed command when no more sequents are left to prove.
Between the command that starts the interactive session and the qed command the user must provide a procedural proof script
made of tactics structured by means of tacticals.

In the tradition of the LCF system, tacticals can be considered higher order tactics. Their syntax is structured and they are
executed atomically. On the contrary, in Matita the syntax of several tacticals is destructured into a sequence of tokens and tactics
in such a way that is is possible to stop execution after every single token or tactic. The original semantics is preserved: the
execution of the whole sequence yields the result expected by the original LCF-like tactical.

6.2 The proof status

During an interactive proof, the proof status is made of the set of sequents to prove and the partial proof built so far.

The partial proof can be inspected on demand in the CIC browser. It will be shown in pseudo-natural language produced on the
fly from the proof term.

The set of sequents to prove is shown in the notebook of the authoring interface, in the top-right corner of the main window of
Matita. Each tab shows a different sequent, named with a question mark followed by a number. The current role of the sequent,
according to the following description, is also shown in the tab tag.

1. Selected sequents (name in boldface, e.g. ?3). The next tactic will be applied to every selected sequent, producing new
selected sequents. Tacticals such as branching ("[") or "focus" can be used to change the set of selected sequents.

2. Sibling sequents (name prefixed by a vertical bar and their position, e.g. |3?2). When the set of selected sequents has more
than one element, the user can decide to focus in turn on each of them. The branching tactical ("[") selects the first sequent
only, marking every previously selected sequent as a sibling sequent. Each sibling sequent is given a different position.
The tactical "2,3:" can be used to select one or more sibling sequents, different from the one proposed, according to their
position. Once the user starts to work on the selected sibling sequents it becomes impossible to select a new set of siblings
until the ("|") tactical is used to end work on the current one.

3. Automatically solved sibling sequents (name strokethrough, e.g. |3?2). Sometimes a tactic can close by side effects a
sibling sequent the user has not selected yet. The sequent is left in the automatically solved status in order for the user to
explicitly accept (using the "skip" tactical) the automatic instantiation in the proof script. This way the correspondence
between the number of branches in the proof script and the number of sequents generated in the proof is preserved.

Matita V0.99.5 User Manual (rev. 0.99.5) 27 / 45

6.3 Tacticals

proof-script ::= proof-step [proof-step]. . .

Table 6.1: proof script

Every proof step can be immediately executed.

Matita V0.99.5 User Manual (rev. 0.99.5) 28 / 45

proof-step ::= LCF-tactical

The tactical is applied to
each selected sequent. Each
new sequent becomes a
selected sequent.

| .

The first selected sequent
becomes the only one
selected. All the remaining
previously selected sequents
are proposed to the user one
at a time when the next "."
is used.

| ;
Nothing changes. Use this
proof step as a separator in
concrete syntax.

| [

Every selected sequent
becomes a sibling sequent
that constitute a branch in
the proof. Moreover, the
first sequent is also selected.

| |

Stop working on the current
branch of the innermost
branching proof. The
sibling branches become the
sibling sequents and the
first one is also selected.

| nat[,nat]. . . :

The sibling sequents
specified by the user
become the next selected
sequents.

| *:

Every sibling branch not
considered yet in the
innermost branching proof
becomes a selected sequent.

| skip

Accept the automatically
provided instantiation (not
shown to the user) for the
currently selected
automatically closed sibling
sequent.

|]

Stop analyzing branches for
the innermost branching
proof. Every sequent
opened during the
branching proof and not
closed yet becomes a
selected sequent.

| focus nat [nat]. . .

Selects the sequents
specified by the user. The
selected sequents must be
completely closed (no new
sequents left open) before
doing an "unfocus that
restores the current set of
sibling branches.

| unfocus

Used to match the
innermost "focus" tactical
when all the sequents
selected by it have been
closed. Until "unfocus" is
performed, it is not possible
to progress in the rest of the
proof.

Table 6.2: proof steps

Matita V0.99.5 User Manual (rev. 0.99.5) 29 / 45

LCF-tactical ::= tactic Applies the specified tactic.

| LCF-tactical ; LCF-tactical

Applies the first tactical first
and the second tactical to
each sequent opened by the
first one.

|
LCF-tactical [
[LCF-tactical] [|
LCF-tactical]. . .]

Applies the first tactical first
and each tactical in the list
of tacticals to the
corresponding sequent
opened by the first one. The
number of tacticals
provided in the list must be
equal to the number of
sequents opened by the first
tactical.

| do nat LCF-tactical TODO
| repeat LCF-tactical TODO

| first [[LCF-tactical] [|
LCF-tactical]. . .] TODO

| try LCF-tactical TODO

| solve [[LCF-tactical] [|
LCF-tactical]. . .] TODO

| (LCF-tactical) Used for grouping during
parsing.

Table 6.3: tactics and LCF tacticals

Matita V0.99.5 User Manual (rev. 0.99.5) 30 / 45

Chapter 7

Tactics

7.1 Quick reference card

tactic ::= @ sterm
| applyS sterm auto_params
| assumption
| /auto_params/.
| cases term pattern
| change pattern with sterm
| -id
| % [nat] [{sterm. . . }]
| cut sterm
| * [as id]
| destruct [(id. . .)] [skip (id. . .)]
| elim sterm pattern
| generalize pattern
| # id
| #_
| inversion sterm
| lapply sterm
| letin id

de f
= sterm

| ##
| normalize pattern [nodelta]
| [<|>] sterm pattern
| whd pattern [nodelta]

Table 7.1: tactics

7.2 apply

@t

Synopsis: @ sterm

Pre-conditions: t must have type T1 → . . . → Tn → G where G can be unified with the conclusion of the current sequent.

Action: It closes the current sequent by applying t to n implicit arguments (that become new sequents).

Matita V0.99.5 User Manual (rev. 0.99.5) 31 / 45

New sequents to prove: It opens a new sequent for each premise Ti that is not instantiated by unification. Ti is the conclusion
of the i-th new sequent to prove.

7.3 auto

/params/

Synopsis: /auto_params/.

Pre-conditions: None, but the tactic may fail finding a proof if every proof is in the search space that is pruned away. Pruning is
controlled by the optional params. Moreover, only lemmas whose type signature is a subset of the signature of the current
sequent are considered. The signature of a sequent is essentially the set of constats appearing in it.

Action: It closes the current sequent by repeated application of rewriting steps (unless paramodulation is omitted), hypothesis
and lemmas in the library.

New sequents to prove: None

7.4 intro

#H

Synopsis: #id

Pre-conditions: The conclusion of the sequent to prove must be an implication or a universal quantification.

Action: It applies the right introduction rule for implication, closing the current sequent.

New sequents to prove: It opens a new sequent to prove adding to the hypothesis the antecedent of the implication and setting
the conclusion to the consequent of the implicaiton. The name of the new hypothesis is H.

7.5 intro_clear

#_

Synopsis: #_

Pre-conditions: The conclusion of the sequent to prove must be an implication.

Action: It applies the ``a fortiori” rule for implication, closing the current sequent.

New sequents to prove: It opens a new sequent whose conclusion is the conclusion of the implication of the original sequent.

7.6 macro_input

##

Synopsis: ##

Pre-conditions: None.

Action: This macro expands to the longest possible list of #Hi tactics. The names of the introduced hypotheses are automatically
generated.

Matita V0.99.5 User Manual (rev. 0.99.5) 32 / 45

7.7 clear

-H

Synopsis: -id

Pre-conditions: H must be an hypothesis of the current sequent to prove.

Action: It hides the hypothesis H from the current sequent.

New sequents to prove: None

7.8 constructor

%n {args}

Synopsis: % [nat] [{sterm. . . }]

Pre-conditions: The conclusion of the current sequent must be an inductive type or the application of an inductive type with at
least n constructors.

Action: It applies the n-th constructor of the inductive type of the conclusion of the current sequent to the arguments args. If n
is omitted, it defaults to 1.

New sequents to prove: It opens a new sequent for each premise of the constructor that can not be inferred by unification. For
more details, see the apply tactic.

7.9 decompose

* as H

Synopsis: * [as id]

Pre-conditions: The current conclusion must be of the form T → G where I is an inductive type applied to its arguments, if any.

Action: It introduces a new hypothesis H of type T. Then it proceeds by cases over H. Finally, if the name H is not specified, it
clears the new hypothesis from all contexts.

New sequents to prove: The ones generated by case analysis.

7.10 rewrite

> p patt

Synopsis: [<|>] sterm pattern

Pre-conditions: p must be the proof of an equality, possibly under some hypotheses.

Action: It looks in every term matched by patt for all the occurrences of the left hand side of the equality that p proves (resp.
the right hand side if < is used). Every occurence found is replaced with the opposite side of the equality.

New sequents to prove: It opens one new sequent for each hypothesis of the equality proved by p that is not closed by unifica-
tion.

Matita V0.99.5 User Manual (rev. 0.99.5) 33 / 45

7.11 applyS

applyS t auto_params

Synopsis: applyS sterm auto_params

Pre-conditions: t must have type T1 → ... → Tn → G.

Action: applyS is useful when apply fails because the current goal and the conclusion of the applied theorems are extensionally
equivalent up to instantiation of metavariables, but cannot be unified. E.g. the goal is P(n*O+m) and the theorem to be
applied proves ∀m.P(m+O).
It tries to automatically rewrite the current goal using auto paramodulation to make it unifiable with G. Then it closes
the current sequent by applying t to n implicit arguments (that become new sequents). The auto_params parameters are
passed directly to auto paramodulation.

New sequents to prove: It opens a new sequent for each premise Ti that is not instantiated by unification. Ti is the conclusion
of the i-th new sequent to prove.

7.12 assumption

assumption

Synopsis: assumption

Pre-conditions: There must exist an hypothesis whose type can be unified with the conclusion of the current sequent.

Action: It closes the current sequent exploiting an hypothesis.

New sequents to prove: None

7.13 cases

cases t pattern

Synopsis: cases term pattern

Pre-conditions: t must inhabit an inductive type

Action: It proceed by cases on t. The new generated hypothesis in each branch are named according to hyps. The elimintation
predicate is restricted by pattern. In particular, if some hypothesis is listed in pattern, the hypothesis is generalized and
cleared before proceeding by cases on t. Currently, we only support patterns of the form H1 . . . Hn ⊢ %. This limitation
will be lifted in the future.

New sequents to prove: One new sequent for each constructor of the type of t. Each sequent has a new hypothesis for each
argument of the constructor.

7.14 change

change patt with t

Synopsis: change pattern with sterm

Matita V0.99.5 User Manual (rev. 0.99.5) 34 / 45

Pre-conditions: Each subterm matched by the pattern must be convertible with the term t disambiguated in the context of the
matched subterm.

Action: It replaces the subterms of the current sequent matched by patt with the new term t. For each subterm matched by the
pattern, t is disambiguated in the context of the subterm.

New sequents to prove: None.

7.15 cut

cut P

Synopsis: cut sterm

Pre-conditions: P must be a type.

Action: It closes the current sequent.

New sequents to prove: It opens two new sequents. The first one has conclusion P → G where G is the old conclusion. The
second sequent has conclusion P and hypotheses the hypotheses of the current sequent to prove.

7.16 destruct

destruct (H0 ... Hn) skip (K0 ... Km)

Synopsis: destruct [(id. . .)] [skip (id. . .)]

Pre-conditions: Each hypothesis Hi must be either a Leibniz or a John Major equality where the two sides of the equality are
possibly applied constructors of an inductive type.

Action: The tactic recursively compare the two sides of each equality looking for different constructors in corresponding posi-
tion. If two of them are found, the tactic closes the current sequent by proving the absurdity of p. Otherwise it adds a new
hypothesis for each leaf of the formula that states the equality of the subformulae in the corresponding positions on the two
sides of the equality. If the newly added hypothesis is an equality between a variable and a term, the variable is substituted
for the term everywhere in the sequent, except for the hypotheses Kj, and it is then cleared from the list of hypotheses.

New sequents to prove: None.

7.17 elim

elim t pattern

Synopsis: elim sterm pattern

Pre-conditions: t must inhabit an inductive type.

Action: It proceeds by cases on the values of t, according to the most appropriate elimination principle for the current goal.
The induction predicate is restricted by pattern. In particular, if some hypothesis is listed in pattern, the hypothesis is
generalized and cleared before eliminating t

New sequents to prove: It opens one new sequent for each case.

Matita V0.99.5 User Manual (rev. 0.99.5) 35 / 45

7.18 generalize

generalize patt

Synopsis: generalize pattern

Pre-conditions: All the terms matched by patt must be convertible and close in the context of the current sequent.

Action: It closes the current sequent by applying a stronger lemma that is proved using the new generated sequent.

New sequents to prove: It opens a new sequent where the current sequent conclusion G is generalized to ∀x.G{x/t} where {x/t}
is a notation for the replacement with x of all the occurrences of the term t matched by patt. If patt matches no subterm
then t is defined as the wanted part of the pattern.

7.19 inversion

inversion t

Synopsis: inversion sterm

Pre-conditions: The type of the term t must be an inductive type or the application of an inductive type.

Action: It proceeds by cases on t paying attention to the constraints imposed by the actual "right arguments" of the inductive
type.

New sequents to prove: It opens one new sequent to prove for each case in the definition of the type of t. With respect to a
simple elimination, each new sequent has additional hypotheses that states the equalities of the "right parameters" of the
inductive type with terms originally present in the sequent to prove. It uses either Leibniz or John Major equality for the
new hypotheses, according to the included files.

7.20 lapply

lapply t

Synopsis: lapply sterm

Pre-conditions: None.

Action: It generalizes the conclusion of the current goal adding as a premise the type of t, closing the current goal.

New sequents to prove: The new sequent has conclusion T → G where T is the type of t and G the old conclusion.

7.21 letin

letin x
de f
= t

Synopsis: letin id
de f
= sterm

Pre-conditions: None.

Action: It adds to the context of the current sequent to prove a new definition x de f
= t.

New sequents to prove: None.

Matita V0.99.5 User Manual (rev. 0.99.5) 36 / 45

7.22 normalize

normalize patt nodelta

Synopsis: normalize pattern [nodelta]

Pre-conditions: None.

Action: It replaces all the terms matched by patt with their βδιζ -normal form. If nodelta is specified, δ -expansions are not
performed.

New sequents to prove: None.

7.23 whd

whd patt nodelta

Synopsis: whd pattern [nodelta]

Pre-conditions: None.

Action: It replaces all the terms matched by patt with their βδιζ -weak-head normal form. If nodelta is specified, δ -expansions
are not performed.

New sequents to prove: None.

Matita V0.99.5 User Manual (rev. 0.99.5) 37 / 45

Chapter 8

Declarative Tactics

8.1 Quick reference card

tactic ::= = term [auto_params | using term |
using once term | proof] [done]

| assume id : sterm

| by induction hypothesis we know term
(id)

| case id [(id : term)] . . . [(id : term)]
| conclude term
| justification done

| justification let id : term such that
term (id)

| let id = term
| obtain id term
| suppose term (id)
| that is equivalent to term
| the thesis becomes term
| we need to prove term [(id)]

| we proceed by cases on term to prove
term

| we proceed by induction on term to
prove term

| justification we proved term [(id)]

Table 8.1: tactics

8.2 assume

assume x : T

Synopsis: assume id : sterm

Pre-conditions: The conclusion of the sequent to prove must be a universal quantification.

Action: It applies the right introduction rule for the universal quantifier, closing the current sequent (in Natural Deduction this
corresponds to the introduction rule for the quantifier).

New sequents to prove: It opens a new sequent to prove the quantified subformula adding x : T to the hypotheses.

Matita V0.99.5 User Manual (rev. 0.99.5) 38 / 45

8.3 suppose

suppose A (H)

Synopsis: suppose term (id)

Pre-condition: The conclusion of the sequent to prove must be an implication.

Action: It applies the right introduction rule for the implication, closing the current sequent (in Natural Deduction this corre-
sponds to the introduction rule for the implication).

New sequents to prove: It opens a new sequent to prove the consequent of the implication adding the antecedent A to the
hypotheses. The name of the new hypothesis is H.

8.4 letin

let x := T

Synopsis: let id = term

Pre-condition: None

Action: It adds a new local definition x := T to the context of the sequent to prove.

New sequents to prove: None.

8.5 that is equivalent to

that is equivalent to t

Synopsis: that is equivalent to term

Pre-condition: The user must have applied one of the following tactics immediately before applying this tactic: assume, sup-
pose, we need to prove, by just we proved,the thesis becomes, that is equivalent to.

Action: If the tactic that was applied before this introduced a new hypothesis in the context, this tactic works on this hypothesis;
otherwise, it works on the conclusion. Either way, if the term t is beta-equivalent to the term t1 on which this tactic is
working (i.e. they can be reduced to a common term), t1 is changed with t. If the tactic that was applied before this tactic
was that is equivalent to, and that tactic was working on a term t1, this tactic keeps working on t1.

New sequent to prove: If this tactic is working on the conclusion, a new sequent with the same hypotheses and the conclusion
changed to t is opened. If this tactic is working on the last introduced hypotesis, a new sequent with the same conclusion
is opened. The hypotheses of this sequent are the same, except for the one on which the tactic is working on, which is
changed with t.

8.6 the thesis becomes

the thesis becomes P

Synopsis: the thesis becomes term

Pre-condition: The provided term P must be identical to the current conclusion.

Action: It allows the user to start a chain of reductions on the conclusion with the tactic that is equivalent to, after stating the
current conclusion.

New sequent to prove: None.

Matita V0.99.5 User Manual (rev. 0.99.5) 39 / 45

8.7 we need to prove

we need to prove T [(H)]

Synopsis: we need to prove term [(id)]

Pre-condition: None.

Action: If id is provided, it applies a logical cut on T. Otherwise, it allows the user to start a chain of reductions on the conclusion
with the tactic that is equivalent to.

New sequents to prove: If id is supplied, a new sequent with T as the conclusion is opened, and a new sequent with the
conclusion of the sequent on which this tactic was applied is opened, with H:T added to the hypotheses.

8.8 we proved

justification we proved T [(id)]

Synopsis: justification we proved term [(id)]

Pre-condition: None.

Action: If id is supplied, a logical cut on T is made. Otherwise, if T is identical to the current conclusion, it allows the user to
start a chain of reductions on the conclusion with the tactic that is equivalent to.

New sequent to prove: If id is supplied, a new sequent with T as the conclusion is opened and then immediately closed using
the supplied justification. A new sequent with the conclusion of the sequent on which this tactic was applied is opened,
and a new hypotesis T is added to the context, with name id. If id is not supplied, no new sequents are opened.

8.9 let such that

justification let x:T such that P (H)

Synopsis: justification let id : term such that term (id)

Pre-condition: None.

Action: It applies the left introduction rule of the existential quantifier on the formula ∃ x. P(x) (in Natural Deduction this
corresponds to the elimination rule for the quantifier).

New sequent to prove: A new sequent with ∃ x. P(x) as the conclusion is opened and then immediately closed using the given
justification. A new sequent with the conclusion of the sequent on which this tactic was applied is opened, and two new
hypotheses x : T and H : P are added to the context.

8.10 we have

justification we have A (H1) and B (H2)

Synopsis: justification we have term (id) and term (id)

Pre-condition: None.

Action: It applies the left multiplicative introduction rule for the conjunction on the formula A ∧ B (in Natural Deduction this
corresponds to the elimination rule for the conjunction).

New sequent to prove: A new sequent with A ∧ B as the conclusion is opened and then immediately closed using the given
justification. A new sequent with the conclusion of the sequent on which this tactic was applied is opened, and two new
hypotheses H1 : A and H2 : B are added to the context.

Matita V0.99.5 User Manual (rev. 0.99.5) 40 / 45

8.11 we proceed by induction on

we proceed by induction on t to prove P

Synopsis: we proceed by induction on term to prove term

Pre-condition: The type of t must be an inductive type and P must be identical to the current conclusion.

Action: It applies the induction principle on t to prove P.

New sequents to prove: It opens a new sequent for each constructor of the type of t, each with the conclusion P instantiated
for the constructor. For the inductive constructors (i.e. if the inductive type is T, constructors with an argument of type
T), the conclusion is a logical implication, where the antecedent is the inductive hypothesis for the constructor, and the
consequent is P.

8.12 we proceed by cases on

we proceed by cases on t to prove P

Synopsis: we proceed by cases on term to prove term

Pre-condition: The type of t must be an inductive type and P must be identical to the current conclusion.

Action: It proceeds by case-analysis on t

New sequents to prove: It opens one new sequent for each constructor of the type of t, each with the conclusion P instantiated
for the constructor.

8.13 case

case id (id1:T1) ... (idn:Tn)

Synopsis: case id [(id : term)] . . . [(id : term)]

Pre-condition: The user must have started a proof by induction/cases that has not been concluded yet, id must be a constructor
for the inductive type of the term under induction/case-analysis, and the case must not have already been proved.

Action: It starts the proof for the case id, where id1:T1,. . . ,idn:Tn are the arguments of the constructor, each declared with its
type.

New sequents to prove: The sequent for the case id.

8.14 by induction hypothesis we know

by induction hypothesis we know P (id)

Synopsis: by induction hypothesis we know term (id)

Pre-condition: The user must have started proving a case for a proof by induction/case-analysis.

Action: It introduces the inductive hypothesis.

New sequents to prove: None.

Matita V0.99.5 User Manual (rev. 0.99.5) 41 / 45

8.15 conclude

conclude t1

Synopsis: conclude term

Pre-condition: The current conclusion must be an equality t1 = tk

Action: It starts an equality chain on the conclusion. It allows the user to apply the tactic = to continue the chain.

New sequent to prove: None.

8.16 obtain

obtain H t1

Synopsis: obtain id term

Pre-condition: None.

Action: It starts an equality chain t1 = ?, which, when concluded, will be added to hypoteses of the current sequent. It allows
the user to apply the tactic = to continue the chain.

New sequent to prove: A new sequent for t1 = ? is opened, a new sequent for ? is opened, and a new sequent with the
conclusion of the sequent on which this tactic was applied is opened, with H: t1 = ? added to its hypotheses. This
hypotesis will be changed when the equality chain is concluded with H: t1 = tk, where tk is the last term of the equality
chain. The goal for ? can be safely ignored, as it will be automatically closed when the equality chain is concluded.

8.17 =

= t2 justification

Synopsis: = term [auto_params | using term | using once term | proof] [done]

Pre-condition: The user must have started an equality chain with conclude or obtain that has not been concluded yet.

Action: It applies the transitivity of = on the left-hand-side of the current conclusion, t2, and the right-hand-side of the current
conclusion, using the given justification. If done is supplied, this represents the last step in the equality chain.

New sequent to prove: A new sequent for lhs = t2 is opened and then immediately closed using the given justification. A new
sequent with the conclusion t2 = rhs is opened.

8.18 done

justification done

Synopsis: justification done

Pre-condition: The user is proving a sequent which was opened with the tactic we need to prove, or the user is proving a
sequent which was opened with the tactic we proceed by induction/cases on, or the user is proving a chain of equalities
that was started with either the tactic conclude or obtain.

Action: It closes the current sequent with the given justification.

New sequents to prove: None.

Matita V0.99.5 User Manual (rev. 0.99.5) 42 / 45

Chapter 9

Other commands

9.1 alias

alias id "s" = "def"

alias symbol "s" (instance n) = "def"

alias num (instance n) = "def"

Synopsis: alias [id qstring = qstring | symbol qstring [(instance nat)] = qstring | num [(instance nat)] = qstring]

Action: Used to give an hint to the disambiguating parser. When the parser is faced to the identifier (or symbol) s or to any
number, it will prefer interpretations that "map s (or the number) to def". For identifiers, "def" is the URI of the inter-
pretation. E.g.: cic:/matita/nat/nat.ind#xpointer(1/1/1) for the first constructor of the first inductive type defined in the
block of inductive type(s) cic:/matita/nat/nat.ind. For symbols and numbers, "def" is the label used to mark the wanted
interpretation.

When a symbol or a number occurs several times in the term to be parsed, it is possible to give an hint only for the instance
n. When the instance is omitted, the hint is valid for every occurrence.

Hints are automatically inserted in the script by Matita every time the user is interactively asked a question to disambiguate
a term. This way the user won’t be posed the same question twice when the script will be executed again.

9.2 check

check t

Synopsis: check sterm

Action: Opens a CIC browser window that shows t together with its type. The command is immediately removed from the
script.

9.3 coercion

coercion nocomposites c : ty
de f
= u on s : S to T

Synopsis: coercion [nocomposites] id [: term
de f
= term on id : term to term]

Matita V0.99.5 User Manual (rev. 0.99.5) 43 / 45

Action: Declares c as an implicit coercion. If only c is given, u is the constant named by c, ty its declared type, s the name of
the last variable abstracted in in ty, S the type of this last variable and T the target of ty. The user can specify all these
component to have full control on how the coercion is indexed. The type of the body of the coercion u must be convertible
to the declared one ty. Let it be ∀x1:T1. . . . ∀x(n-1):T(n-1).Tn. Then s must be one of x1 . . . xn (possibly prefixed by _
if the product is non dependent). Let s be xi in the following. Then S must be Ti where all bound variables are replaced by
?, and T must be Tn where all bound variable are replaced by ?. For example the following command declares a coercions
from vectors of any length to lists of natural numbers.

coercion nocomposites v2l : ∀n:nat.∀v:Vect nat n. List nat
de f
= l_of_v on _v : Vect

nat ? to List nat

Every time a term x of a type that matches S (Vect nat ? here) is used with an expected type that matches T (List nat
here), Matita automatically replaces x with (u ? . . . ? x ? . . . ?) to avoid a typing error. Note that the position of x is
determined by s.

Implicit coercions are not displayed to the user: (u ? . . . ? x) is rendered simply as x.

When a coercion u is declared from source s to target t and there is already a coercion u’ of target s or source t, a composite
implicit coercion is automatically computed by Matita unless nocomposites is specified.

Note that Vect nat ? can be replaced with Vect ? ? to index the coercion is a loose way.

9.4 include

include "s"

Synopsis: include qstring

Action: Every coercion, notation and interpretation that was active when the file s was compiled last time is made active. The
same happens for declarations of disambiguation hints (aliases). On the contrary, theorem and definitions declared in a file
can be immediately used without including it.

The file s is automatically compiled if it is not compiled yet.

If the file s was already included, either directly or recursively, the commands does nothing.

9.5 include alias

include alias "s"

Synopsis: include alias qstring

Action: Every interpretation declared in the file s is re-declared so to make it the preferred choice for disambiguation.

9.6 qed

qed

Synopsis: qed

Action: Saves and indexes the current interactive theorem or definition. In order to do this, the set of sequents still to be proved
must be empty.

Matita V0.99.5 User Manual (rev. 0.99.5) 44 / 45

9.7 qed-

qed-

Synopsis: qed-

Action: Saves the current interactive theorem or definition without indexing. Therefore automation will ignore it. In order to do
this, the set of sequents still to be proved must be empty.

9.8 unification hint

unification hint n := v1 : T1,... vi : Ti; h1 ≟ t1, ... hn ≟ tn ⊢ tl
≡ tr.

Synopsis: unification hint nat := [id [: term] ,..] ; [id ≟ term ,..] ⊢ term ≡ term

Action: Declares the hint at precedence n
The file hints_declaration.ma must be included to declare hints with that syntax.

Unification hints are described in the paper "Hints in unification" by Asperti, Ricciotti, Sacerdoti and Tassi.

9.9 universe constraint

TODO

Matita V0.99.5 User Manual (rev. 0.99.5) 45 / 45

Chapter 10

License

Both Matita and this document are part of HELM, an Hypertextual, Electronic Library of Mathematics, developed at the Com-
puter Science Department, University of Bologna, Italy.

HELM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published
by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

HELM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with HELM; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. A copy of the GNU General Public License is
available at this link.

http://www.gnu.org/copyleft/gpl.html

	Introduction
	Features
	Matita vs Coq

	Installation
	Using the LiveCD
	Creating the virtual machine
	Sharing files with the real PC

	Installing from sources
	Getting the source code
	Requirements
	Compiling and installing

	Getting started
	How to type Unicode symbols
	Browsing and searching
	Browsing the library
	Looking at a proof under development

	Authoring
	How to compile a script
	The authoring interface

	Syntax
	Terms & co.
	Lexical conventions
	Terms

	Definitions and declarations
	axiom
	definition
	discriminator
	inverter
	TODO
	(co)inductive types declaration
	record

	Proofs
	theorem
	corollary
	lemma
	fact
	example

	Tactic arguments
	pattern
	reduction-kind
	auto-params
	justification

	Extending the syntax
	notation
	interpretation

	Tacticals
	Interactive proofs and definitions
	The proof status
	Tacticals

	Tactics
	Quick reference card
	@
	//
	#
	#_
	##
	-
	%
	*
	>
	applyS
	assumption
	cases
	change
	cut
	destruct
	elim
	generalize
	inversion
	lapply
	letin
	normalize
	whd

	Declarative Tactics
	Quick reference card
	assume
	suppose
	letin
	that is equivalent to
	the thesis becomes
	we need to prove
	we proved
	let such that
	we have
	we proceed by induction on
	we proceed by cases on
	case
	by induction hypothesis we know
	conclude
	obtain
	=
	done

	Other commands
	alias
	check
	coercion
	include
	include alias
	qed
	qed-
	unification hint
	universe constraint

	License

