Matita V0.99.5 User Manual (rev. 0.99.5)

Andrea Asperti, Claudio Sacerdoti Coen, Ferruccio Guidi, Enrico Tassi, and Stefano
Zacchiroli

Copyright © 2006 The HELM team.

Both Matita and this document are free software, you can redistribute them and/or modify them under the terms of the GNU
General Public License as published by the Free Software Foundation. See Chapter 10 for more information.

COLLABORATORS

	TITLE :		
Matita V0.99.5 User Manual (rev. 0.99.5)	DATE	SIGNATURE	
WRITTEN BY	NAME	Andrea Asperti, Claudio Sacerdoti Coen, Ferruccio Guidi, Enrico Tassi, and Stefano Zacchiroli	January 3, 2023

REVISION HISTORY

NUMBER	DATE	DESCRIPTION	NAME
0.99 .5	$12 / 07 / 2006$		

Contents

1 Introduction 1
1.1 Features 1
1.2 Matita vs Coq 1
2 Installation 3
2.1 Using the LiveCD 3
2.1.1 Creating the virtual machine 3
2.1.2 Sharing files with the real PC 7
2.2 Installing from sources 10
2.2.1 Getting the source code 10
2.2.2 Requirements 11
2.2.3 Compiling and installing 11
3 Getting started 12
3.1 How to type Unicode symbols 12
3.2 Browsing and searching 12
3.2.1 Browsing the library 12
3.2.2 Looking at a proof under development 13
3.3 Authoring 13
3.3.1 How to compile a script 13
3.3.2 The authoring interface 13
4 Syntax 14
4.1 Terms \& co. 14
4.1.1 Lexical conventions 14
4.1.2 Terms 17
4.2 Definitions and declarations 17
4.2.1 axiom 17
4.2.2 definition 17
4.2.3 discriminator 17
4.2.4 inverter 17
4.2.5 TODO 17
4.2.6 (co)inductive types declaration 18
4.2.7 record 18
4.3 Proofs 18
4.3.1 theorem 18
4.3.2 corollary 18
4.3.3 lemma 19
4.3.4 fact 19
4.3.5 example 19
4.4 Tactic arguments 19
4.4.1 pattern 19
4.4.2 reduction-kind 20
4.4.3 auto-params 20
4.4.4 justification 20
5 Extending the syntax 22
5.1 notation 22
5.2 interpretation 25
6 Tacticals 26
6.1 Interactive proofs and definitions 26
6.2 The proof status 26
6.3 Tacticals 27
7 Tactics 30
7.1 Quick reference card 30
7.2 @ 30
7.3 // 31
7.4 \# 31
7.5 \#_ 31
7.6 \#\# 31
7.7 32
7.8 \% 32
7.9 * 32
$7.10>$ 32
7.11 applyS 33
7.12 assumption 33
7.13 cases 33
7.14 change 33
7.15 cut 34
7.16 destruct 34
7.17 elim 34
7.18 generalize 35
7.19 inversion 35
7.20 lapply 35
7.21 letin 35
7.22 normalize 36
7.23 whd 36
8 Declarative Tactics 37
8.1 Quick reference card 37
8.2 assume 37
8.3 suppose 38
8.4 letin 38
8.5 that is equivalent to 38
8.6 the thesis becomes 38
8.7 we need to prove 39
8.8 we proved 39
8.9 let such that 39
8.10 we have 39
8.11 we proceed by induction on 40
8.12 we proceed by cases on 40
8.13 case 40
8.14 by induction hypothesis we know 40
8.15 conclude 41
8.16 obtain 41
$8.17=$ 41
8.18 done 41
9 Other commands 42
9.1 alias 42
9.2 check 42
9.3 coercion 42
9.4 include 43
9.5 include alias 43
9.6 qed 43
9.7 qed 44
9.8 unification hint 44
9.9 universe constraint 44
10 License 45

List of Figures

2.1 The brand new virtual machine 4
2.2 Mounting an ISO image 5
2.3 Choosing the ISO image 6
2.4 Choosing the ISO image 7
2.5 Set up a shared folder 8
2.6 Choosing the folder to share 9
2.7 Naming the shared folder 9
2.8 Using it from the virtual machine 10

List of Tables

4.1 qstring 14
4.2 id 14
4.3 nat 15
4.4 char 15
4.5 uri-step 15
4.6 uri 15
4.7 csymbol 15
4.8 symbol 15
4.9 Terms 15
4.10 Simple terms 16
4.11 Arguments 16
4.12 Pattern matching 16
4.13 pattern 19
4.14 path 19
4.15 reduction-kind 20
4.16 auto-params 21
4.17 simple-auto-param 21
4.18 justification 21
5.1 usage 22
5.2 associativity 22
5.3 notation_rhs 22
5.4 unparsed_ast 23
5.5 enriched_term 23
5.6 unparsed_meta 23
5.7 level2_meta 23
5.8 notation_lhs 23
5.9 layout 24
5.10 literal 24
5.11 interpretation_argument 25
5.12 interpretation_rhs 25
6.1 proof script 27
6.2 proof steps 28
6.3 tactics and LCF tacticals 29
7.1 tactics 30
8.1 tactics 37

Chapter 1

Introduction

1.1 Features

Matita is an interactive theorem prover (or proof assistant) with the following characteristics:

- It is based on a variant of the Calculus of (Co)Inductive Constructions (CIC). CIC is also the logic of the Coq proof assistant.
- It adopts a procedural proof language, but it has a new set of small step tacticals that improve proof structuring and debugging.
- It has a stand-alone graphical user interface (GUI) inspired by CtCoq/Proof General. The GUI is implemented according to the state of the art. In particular:
- It is based and fully integrated with Gtk/Gnome.
- An on-line help can be browsed via the Gnome documentation browser.
- Mathematical formulae are rendered via Unicode.
- It allows the use of the typical ambiguous mathematical notation by means of a disambiguating parser.

1.2 Matita vs Coq

The system shares a common look\&feel with the Coq proof assistant and its graphical user interface. The two systems have variants of the same logic, close proof languages and similar sets of tactics. From the user point of view the main lacking features with respect to Coq are:

- proof extraction;
- an extensible language of tactics;
- automatic implicit arguments;
- several ad-hoc decision procedures;
- several rarely used variants for most of the tactics;
- sections and local variables.

Still from the user point of view, the main differences with respect to Coq are:

- the language of tacticals that allows execution of partial tactical application;
- the unification of the concept of metavariable and existential variable;
- terms with subterms that cannot be inferred are always allowed as arguments of tactics or other commands;
- ambiguous terms are disambiguated by direct interaction with the user;
- theorems and definitions in the library are always accessible without needing to require/include them; right now, only notation needs to be included to become active, but we plan to remove this limitation.

Chapter 2

Installation

Matita is a quite complex piece of software, we thus recommend you to either install al precompiled version or use the LiveCD. If you are running Debian GNU/Linux (or one of its derivatives like Ubuntu), you can install matita typing

```
aptitude install matita matita-standard-library
```

If you are running MacOSX or Windows, give the LiveCD a try before trying to compile Matita from its sources.

2.1 Using the LiveCD

In the following, we will assume you have installed virtualbox for your platform and downloaded the iso image of the LiveCD

2.1.1 Creating the virtual machine

Click on the New button, a wizard will popup, you should ask to its questions as follows

1. The name should be something like Matita, but can be any meaningful string.
2. The OS type should be Debian
3. The base memory size can be 256 mega bytes, but you may want to increase it if you are going to work with huge formalizations.
4. The boot hard disk should be no hard disk. It may complain that this choice is not common, but it is right, since you will run a LiveCD you do not need to emulate an hard drive.

Now that you are done with the creation of the virtual machine, you need to insert the LiveCD in the virtual cd reader unit.

Figure 2.1: The brand new virtual machine

Click on CD/DVD-ROM (that should display something like: Not mouted). Then click on mount CD/DVD drive and select the ISO image option. The combo-box should display no available image, you need to add the ISO image you downloaded from the Matita website clicking on the button near the combo-box. to start the virtual machine.

Figure 2.2: Mounting an ISO image

In the newely opened window click the Add button

Figure 2.3: Choosing the ISO image

A new windows will pop-up: choose the file you downloaded (usually matita-version.iso) and click open.

-

Figure 2.4: Choosing the ISO image

Now select the new entry you just added as the CD image you want to insert in the virtual CD drive. You are now ready to start the virtual machine.

2.1.2 Sharing files with the real PC

The virtual machine Matita will run on, has its own file system, that is completely separated from the one of your real PC (thus your files are not available in the emulated environment) and moreover it is a non-presistent file system (thus you data is lost every time you turn off the virtual machine).
Virtualbox allows you to share a real folder (beloging to your real PC) with the emulated computer. Since this folder is persistent, you are encouraged to put your work there, so that it is not lost when the virtual machine is powered off.

The first step to set up a shared folder is to click on the shared folder configuration entry of the virtual machine.

Figure 2.5: Set up a shared folder

Then you shuld add a shared folder clicking on the plus icon on the right

Figure 2.6: Choosing the folder to share

Then you have to specify the real PC folder you want to share and name it. A reasonable folder to share is /home on a standard Unix system, while /Users on MaxOSX. The name you give to the share is important, you should remember it.

Figure 2.7: Naming the shared folder

Once your virtual machine is up and running, you can mount (that meand have access to) the shared folder by clicking on the Mount VirtualBox share icon, and typing the name of the share.

Figure 2.8: Using it from the virtual machine

A window will then pop-up, and its content will be the the content of the real PC folder.

2.2 Installing from sources

Install Matita from the sources is hard, you have been warned!

2.2.1 Getting the source code

You can get the Matita source code in two ways:

1. go to the download page and get the latest released source tarball;
2. get the development sources from our SVN repository. You will need the components/ and matita/ directories from the trunk/helm/software/ directory, plus the configure and Makefile* stuff from the same directory.
In this case you will need to run autoconf before proceding with the building instructions below.

2.2.2 Requirements

In order to build Matita from sources you will need some tools and libraries. They are listed below.

Note for Debian (and derivatives) users

If you are running a Debian GNU/Linux distribution, or any of its derivative like Ubuntu, you can use APT to install all the required tools and libraries since they are all part of the Debian archive.
apt-get install ocaml ocaml-findlib libgdome2-ocaml-dev liblablgtk2-ocaml-dev liblablgtkmathview-ocaml-dev liblablgtksourceview-ocaml-dev libsqlite3-ocaml-dev libocamInet-ocaml-dev libzip-ocaml-dev libhttp-ocaml-dev ocaml-ulex08 libexpat-ocaml-dev libmysql-ocaml-dev camlp5
An official debian package is going to be added to the archive too.

REQUIRED TOOLS AND LIBRARIES

OCaml the Objective Caml compiler, version 3.09 or above
Findlib OCaml package manager, version 1.1.1 or above
OCaml Expat OCaml bindings for the expat library
LablGTK OCaml bindings for the GTK+ library, version 2.6 .0 or above
GtkSourceView, LablGtkSourceView extension for the GTK + text widget (adding the typical features of source code editors) and its OCaml bindings

Ocamlnet collection of OCaml libraries to deal with application-level Internet protocols and conventions
ulex Unicode lexer generator for OCaml
CamIZip OCaml library to access . gz files

2.2.3 Compiling and installing

Once you get the source code the installations steps should be quite familiar.
First of all you need to configure the build process executing . /configure. This will check that all needed tools and library are installed and prepare the sources for compilation and installation.

Quite a few (optional) arguments may be passed to the configure command line to change build time parameters. They are listed below, together with their default values:

CONFIGURE COMMAND LINE ARGUMENTS

--with-runtime-dir=dir (Default:/usr/local/matita) Runtime base directory where all Matita stuff (executables, configuration files, standard library, ...) will be installed
--enable-debug (Default: disabled) Enable debugging code. Not for the casual user.

Then you will manage the build and install process using make as usual. Below are reported the targets you have to invoke in sequence to build and install:

MAKE TARGETS

world builds components needed by Matita and Matita itself (in bytecode or native code depending on the availability of the OCaml native code compiler)
install installs Matita related tools, standard library and the needed runtime stuff in the proper places on the filesystem.

Chapter 3

Getting started

If you are already familiar with the Calculus of (Co)Inductive Constructions (CIC) and with interactive theorem provers with procedural proof languages (expecially Coq), getting started with Matita is relatively easy. You just need to learn how to type Unicode symbols, how to browse and search the library and how to author a proof script.

3.1 How to type Unicode symbols

Unicode characters can be typed in several ways:

- Using the "Ctrl+Shift+Unicode code" standard Gnome shortcut. E.g. Ctrl+Shift+3a9 generates " Ω ".
- Typing the ligature "\name" where "name" is a standard Unicode or LaTeX name for the character or an ASCII art resembling the shape of the character. Pressing "Alt +L " or Space or Enter just after the last character of the name converts the ligature to the Unicode symbol. E.g. "\Delta" followed by Alt + L generates " Δ ", while pressing Alt-L after " $=>$ " generates " \Rightarrow "
- Typing a symbol and rotating trough its equivalence class with Alt-L. E.g. pressing Alt-L after an "l" generates a " λ ", while pressing Alt-L after an " \rightarrow " once generates " \rightrightarrows " and pressing Alt-L again generates " \Rightarrow ".

The comprehensive list of symbols names or shortcuts and their equivalence classes is available clicking on the "TeX/UTF-8 table" item of the "View" menu.

There is a memory mechanism related to equivalence classes that remembers your last choice, making it the default one. For example, if you use "_" to generate "\&\#x23bb;" (that is the third choice, after "\&\#x23bd;" and "\&\#x23bc;"), the next time you type Alt-L after "_" you immediately get "\&\#x23bb;".

3.2 Browsing and searching

The CIC browser is used to browse and search the library. You can open a new CIC browser selecting "New Cic Browser" from the "View" menu of Matita, or by pressing "F3". The CIC browser is similar to a traditional Web browser.

3.2.1 Browsing the library

To browse the library, type in the location bar the absolute URI of the theorem, definition or library fragment you are interested in. "cic:/" is the root of the library. Contributions developed in Matita are under "cic:/matita"; all the others are part of the library of Coq.

Following the hyperlinks it is possible to navigate in the Web of mathematical notions. Proof are rendered in pseudo-natural language and mathematical notation is used for formulae. For now, mathematical notation must be included in the current script to be activated, but we plan to remove this limitation.

3.2.2 Looking at a proof under development

A proof under development is not yet part of the library. The special URI "about:proof" can be used to browse the proof currently under development, if there is one. The "home" button of the CIC browser sets the location bar to "about:proof".

3.3 Authoring

3.3.1 How to compile a script

Scripts are compiled to base URIs. Base URIs are of the form "cic:/matita/path" and are given once for all for a set of scripts using the "root" file.

A "root" file has to be placed in the root of a script set, for example, consider the following files and directories, and assume you keep files in "list" separated from files in "sort" (for example the former directory may contain functions and proofs about lists, while latter sorting algorithms for lists):

```
list/
    list.ma (* depending just on the standard library *)
    utils/
        swap.ma (* including list.ma *)
sort/
    qsort.ma (* including utils/swap.ma *)
```

To be able to compile properly the contents of "list" a file called root has to be placed in it. The file should be like the following snippet.

```
baseuri=cic:/matita/mydatastructures
```

This file tells Matita that objects generated by "list.ma" have to be placed in "cic:/matita/mydatastructures/list" while objects generated by "swap.ma" have to be placed in "cic:/matita/mydatastructures/utils/swap".

Once you created the root file, you must generate a depend file. Enter the "list" directory (the root of yuor file set) and type "matitadep". Remember to regenerate the depend file every time you alter the dependencies of your files (for example including other scripts). You can now compile you files typing "matitac".

To compile the "sort" directory, create a root file in "sort/" like the following one and then run "matitadep".

```
baseuri=cic:/matita/myalgorithms
include_paths=../list
```

The include_paths field can declare a list of paths separated by space. Please omit any " $/ "$ from the end of base URIs or paths.

3.3.2 The authoring interface

TODO

Chapter 4

Syntax

To describe syntax in this manual we use the following conventions:

1. Non terminal symbols are emphasized and have a link to their definition. E.g.: term
2. Terminal symbols are in bold. E.g.: theorem
3. Optional sequences of elements are put in square brackets. E.g.: [in term]
4. Alternatives are put in square brakets and they are separated by vertical bars. E.g.: [<|>]
5. Repetitions of a sequence of elements are given by putting the sequence in square brackets, that are followed by three dots. The empty sequence is a valid repetition. E.g.: [and term]...
6. Characters belonging to a set of characters are given by listing the set elements in square brackets. Hyphens are used to specify ranges of characters in the set. E.g.: [a-zA-Z0-9_-]

4.1 Terms \& co.

4.1.1 Lexical conventions

qstring	$::=$	" \langle any sequence of characters excluded $"\rangle\rangle "$

Table 4.1: qstring

id	::=	〈 any sequence of letters,
		underscores or valid XML
		digits prefixed by a latin
		letter ([a-zA-Z]) and
		post-fixed by a possible
		empty sequence of decorators ([?’])>>
		$\text { decorators ([?’’]) }\rangle$

Table 4.2: id

nat	$::=$	$\langle\langle$ any sequence of valid
	$X M L$ digits $\rangle\rangle$	

Table 4.3: nat
char $::=\quad[\mathbf{a - z A - Z 0 - 9 -}-] \quad$.

Table 4.4: char
uri-step $\quad::=\quad$ char[char]...

Table 4.5: uri-step

uri	$:=$
$\begin{array}{l}{[\text { cic://theory://]uri-step }[/ \text { /uri- }} \\ \text { step }] \ldots . i d[\text {.id }] \ldots[\# \text { mpointer }\end{array}$ nat/nat $[/$ nat $\left.\left.] \ldots\right)\right]$	

Table 4.6: uri

csymbol	$::=$	id

Table 4.7: csymbol

symbol	$:=$	$\langle\langle$ None of the above $\rangle\rangle$

Table 4.8: symbol

term	::=	sterm	simple or delimited term
	I	term term	application
	I	λ args.term	λ-abstraction
	I	Пargs.term	dependent product meant to define a datatype
	1	$\forall a r g s . t e r m$	dependent product meant to define a proposition non-dependent product
	1	term \rightarrow term	(logical implication or function space)
	1	$\begin{aligned} & \text { let }[i d l(i d: \text { term })] \stackrel{\text { def }}{=} \text { term } \\ & \text { in } \text { term } \end{aligned}$	local definition
	1	let [co]rec rec_def [and rec_def]... in term	(co)recursive definitions
rec_def	::=	$i d\left[i d __\mid(i d[, i d] \ldots\right.$:term)]...	user provided notation
		[on id] [: term] $\stackrel{\text { def }}{=}$ term]	

Table 4.9: Terms

Table 4.10: Simple terms

args	::=	[$:$ term]	ignored argument
	1	(_[: term])	ignored argument
	I	$i d[, i d] \ldots[$ term $]$	
	1	(id [,id] ... [: term $]$)	
$\operatorname{args} 2$::=	id	
	I	(id[$[$ id $] \ldots$. : term)	

Table 4.11: Arguments
$\left.\begin{array}{lcll}\hline \text { match_branch } & ::= & \text { match_pattern } \Rightarrow \text { term } & \\ \text { match_pattern } & ::= & \begin{array}{l}\text { id }\end{array} & \begin{array}{l}\text { n-ary constructor constructor (binds the } \\ \mathrm{n} \text { arguments) }\end{array} \\ & \text { (id id }[i d] \ldots \text {) } & \begin{array}{l}\mathrm{n} \text {-ary constructor (binds the } \\ \mathrm{n} \text { arguments) }\end{array} \\ \text { any remaining constructor } \\ \text { (ignoring its arguments) }\end{array}\right]$

Table 4.12: Pattern matching

4.1.2 Terms

4.2 Definitions and declarations

4.2.1 axiom id: term

axiom H: P
\mathbf{H} is declared as an axiom that states \mathbf{P}

4.2.2 definition id[: term $][\stackrel{\text { def }}{=}$ term $]$

definition $\mathbf{f}: T \stackrel{\text { def }}{=} \mathbf{t}$
\mathbf{f} is defined as $\mathbf{t} ; \mathbf{T}$ is its type. An error is raised if the type of \mathbf{t} is not convertible to \mathbf{T}.
\mathbf{T} is inferred from \mathbf{t} if omitted.
\mathbf{t} can be omitted only if \mathbf{T} is given. In this case Matita enters in interactive mode and \mathbf{f} must be defined by means of tactics.
Notice that the command is equivalent to theorem $\mathbf{f}: \mathbf{T} \stackrel{\text { def }}{=} \mathbf{t}$.

4.2.3 discriminator id

discriminator i

Defines a new discrimination (injectivity+conflict) principle à la McBride for the inductive type i.
The principle will use John Major's equality if such equality is defined, otherwise it will use Leibniz equality; in the former case, it will be called $\mathbf{i}_{\mathbf{\prime}} \mathbf{j m d i s c r}$, in the latter, $\mathbf{i}_{\mathbf{\prime}}$ discr. The command will fail if neither equality is available.
Discrimination principles are used by the destruct tactic and are usually automatically generated by Matita during the definition of the corresponding inductive type. This command is thus especially useful when the correct equality was not loaded at the time of that definition.

4.2.4 inverter id for id (path) [term]
 inverter n for i (path) : s

Defines a new induction/inversion principle for the inductive type \mathbf{i}, called \mathbf{n}.
(path) must be in the form (\#\#\# ... \#), where each \# can be either ? or \%, and the number of symbols is equal to the number of right parameters (indices) of i. Parentheses are mandatory. If the j-th symbol is \%, Matita will generate a principle providing equations for reasoning on the j-th index of \mathbf{i}. If the symbol is a $\mathbf{?}$, no corresponding equation will be provided.
\mathbf{s}, which must be a sort, is the target sort of the induction/inversion principle and defaults to Prop.

4.2.5 letrec TODO

TODO
4.2.6 [inductive|coinductive] id [args2]... : term $\stackrel{\text { def }}{=}[\mid][i d: t e r m][\mid$ id:term]... [with id : term $\stackrel{\text { def }}{=}[\mid]$ [id:term] [| id:term]...]...

Declares a family of two mutually inductive types \mathbf{i} and \mathbf{i} ' whose types are \mathbf{S} and \mathbf{S}^{\prime}, which must be convertible to sorts.
The constructors $\mathbf{k i}$ of type $\mathbf{T i}$ and $\mathbf{k i}$ ' of type $\mathbf{T i}$ ' are also simultaneously declared. The declared types \mathbf{i} and $\mathbf{i}{ }^{\prime}$ may occur in the types of the constructors, but only in strongly positive positions according to the rules of the calculus.

The whole family is parameterized over the arguments $\mathbf{x}, \mathbf{y}, \mathbf{z}$.
If the keyword coinductive is used, the declared types are considered mutually coinductive.
Elimination principles for the record are automatically generated by Matita, if allowed by the typing rules of the calculus according to the sort \mathbf{S}. If generated, they are named \mathbf{i} ind, $\mathbf{i} _$rec and \mathbf{i} _rect according to the sort of their induction predicate.
4.2.7 record id [args2]... : term $\stackrel{\text { def }}{=}\{[$ id $[: \mid:>]$ term $][; i d[: \mid:>]$ term]... $\}$
record id $\mathrm{x} y \mathrm{z}: \quad \mathrm{S} \stackrel{\text { def }}{=}\{\mathrm{f} 1: \mathrm{T} 1 ; \ldots ; \mathrm{fn}: \mathrm{Tn}\}$
Declares a new record family id parameterized over $\mathbf{x}, \mathbf{y}, \mathbf{z}$.
\mathbf{S} is the type of the record and it must be convertible to a sort.
Each field $\mathbf{f} \mathbf{i s}$ declared by giving its type $\mathbf{T i}$. A record without any field is admitted.
Elimination principles for the record are automatically generated by Matita, if allowed by the typing rules of the calculus according to the sort \mathbf{S}. If generated, they are named \mathbf{i}_{-}ind, \mathbf{i} _rec and \mathbf{i}_{-}rect according to the sort of their induction predicate.
For each field $\mathbf{f i}$ a record projection $\mathbf{f i}$ is also automatically generated if projection is allowed by the typing rules of the calculus according to the sort \mathbf{S}, the type $\mathbf{T 1}$ and the definability of depending record projections.
If the type of a field is declared with :>, the corresponding record projection becomes an implicit coercion. This is just syntactic sugar and it has the same effect of declaring the record projection as a coercion later on.

4.3 Proofs

4.3.1 theorem id[: term $][\stackrel{\text { def }}{=}$ term $]$

theorem $\mathbf{f}: \mathbf{P} \stackrel{\text { def }}{=} \mathbf{p}$
Proves a new theorem \mathbf{f} whose thesis is \mathbf{P}.
If \mathbf{p} is provided, it must be a proof term for \mathbf{P}. Otherwise an interactive proof is started.
\mathbf{P} can be omitted only if the proof is not interactive.
A warning is raised if the name of the theorem cannot be obtained by mangling the name of the constants in its thesis.
Notice that the command is equivalent to definition f: $\mathbf{T} \stackrel{\text { def }}{=} \mathbf{t}$.
4.3.2 corollary id[: term $][\stackrel{\text { def }}{=}$ term $]$
corollary f: $T \stackrel{\text { def }}{=} t$
Same as theorem f: T $\stackrel{\text { def }}{=} \mathbf{t}$
4.3.3 lemma io[: term $[\stackrel{\text { def }}{=}$ term $]$
lemma $\mathbf{f}: T \stackrel{\text { def }}{=} \mathrm{t}$
Same as theorem $\mathbf{f}: \mathbf{T} \stackrel{\text { def }}{=} \mathbf{t}$
4.3.4 fact iod: term $] \stackrel{\text { def }}{=}$ term $]$
fact $f: T \stackrel{\text { def }}{=} t$
Same as theorem $\mathbf{f}: \mathbf{T} \stackrel{\text { def }}{=} \mathbf{t}$

4.3.5 example id $[$: term $][\stackrel{\text { def }}{=}$ term $]$

example $\mathrm{f}: ~ \mathrm{~T} \stackrel{\text { def }}{=} \mathrm{t}$
Same as theorem $\mathbf{f}: \mathbf{T} \stackrel{\text { def }}{=} \mathbf{t}$, but the example is not indexed nor used by automation.

4.4 Tactic arguments

This section documents the syntax of some recurring arguments for tactics.

4.4.1 pattern

pattern	$::=$	in $[$ id $[:$ path $]] \ldots[\vdash$ path $]] ;$ in match path $[$ in $[i d[:$ path $]] \ldots[\vdash$ path $]] ;$	simple pattern
	। full pattern		

Table 4.13: pattern

	$::=$
path	\langle any sterm without occurrences of Set, Prop, CProp, Type, id, uri and
	user provided notation; however, $\%$ is now an additional production for sterm $\rangle\rangle$

Table 4.14: path
A path locates zero or more subterms of a given term by mimicking the term structure up to:

1. Occurrences of the subterms to locate that are represented by $\%$.
2. Subterms without any occurrence of subterms to locate that can be represented by ?.

Warning: the format for a path for a match \ldots with expression is restricted to: match path with $\left[\ldots \Rightarrow\right.$ path $\mathrm{I} \ldots \mathrm{I}_{-} \Rightarrow$ path $]$ Its semantics is the following: the $n-t h "_{-} \Rightarrow$ path" branch is matched against the n-th constructor of the inductive data type. The head λ-abstractions of path are matched against the corresponding constructor arguments.
For instance, the path $\forall_{-\prime}$: ? . (? ? \% ? \rightarrow (? ? ? \%) locates at once the subterms $\mathbf{x}+\mathbf{y}$ and $\mathbf{x} * \mathbf{y}$ in the term $\forall \mathbf{x}, \mathrm{y}:$ nat $. \mathrm{x}+\mathrm{y}=\mathbf{1} \rightarrow \mathbf{0}=\mathbf{x} * \mathbf{y}$ (where the notation $\mathbf{A}=\mathrm{B}$ hides the term (eq $\mathbf{T} \mathbf{A}$ B) for some type \mathbf{T}).

A simple pattern extends paths to locate subterms in a whole sequent. In particular, the pattern $\{\mathbf{H}: \mathbf{p} \mathbf{K}: \mathbf{q} \vdash \mathbf{r}\}$ locates at once all the subterms located by the pattern r in the conclusion of the sequent and by the patterns p and q in the hypotheses H and \boldsymbol{K} of the sequent.

If no list of hypotheses is provided in a simple pattern, no subterm is selected in the hypothesis. If the $\vdash \mathrm{p}$ part of the pattern is not provided, no subterm will be matched in the conclusion if at least one hypothesis is provided; otherwise the whole conclusion is selected.

Finally, a full pattern is interpreted in three steps. In the first step the match \mathbf{T} in part is ignored and a set S of subterms is located as for the case of simple patterns. In the second step the term \mathbf{T} is parsed and interpreted in the context of each subterm s $\in S$. In the last term for each $s \in S$ the interpreted term \mathbf{T} computed in the previous step is looked for. The final set of subterms located by the full pattern is the set of occurrences of the interpreted \mathbf{T} in the subterms s.
A full pattern can always be replaced by a simple pattern, often at the cost of increased verbosity or decreased readability.
Example: the pattern $\left\{\right.$ match $\mathbf{x}+\mathbf{y}$ in $\vdash \forall_{-\prime}$, ?.$(? \quad$? ?) \} locates only the first occurrence of $\mathbf{x}+\mathbf{y}$ in the sequent \mathbf{x}, y : nat $\vdash \forall \mathbf{z}, \mathrm{w}:$ nat. $(\mathrm{x}+\mathrm{y}) *(\mathrm{z}+\mathrm{w})=\mathbf{z} *(\mathrm{x}+\mathrm{y})+\mathrm{w} *(\mathrm{x}+\mathrm{y})$. The corresponding simple pattern is $\left\{\vdash \forall_{-\prime}, ?\right.$? (? ? (? ?) ?) \}.

Every tactic that acts on subterms of the selected sequents have a pattern argument for uniformity. To automatically generate a simple pattern:

1. Select in the current goal the subterms to pass to the tactic by using the mouse. In order to perform a multiple selection of subterms, hold the Ctrl key while selecting every subterm after the first one.
2. From the contextual menu select "Copy".
3. From the "Edit" or the contextual menu select "Paste as pattern"

4.4.2 reduction-kind

Reduction kinds are normalization functions that transform a term to a convertible but simpler one. Each reduction kind can be used both as a tactic argument and as a stand-alone tactic.

\begin{tabular}{|c|c|c|c|}
\hline reduction-kind \& $:$

| \& normalize [nodelta]

whd [nodelta] \& | Computes the $\beta \delta \iota \zeta$-normal form. If nodelta is specified, δ-expansions are not performed. |
| :--- |
| Computes the $\beta \delta_{\imath} \zeta$-weak-head normal form. If nodelta is specified, δ-expansions are not performed. |

\hline
\end{tabular}

Table 4.15: reduction-kind

4.4.3 auto-params

4.4.4 justification

auto_params	::=	[nat] [simple_auto_param]... [by [sterm... I _]]	The natural number, which defaults to 1 , gives a bound to the depth of the search tree. The terms listed is the only knowledge base used by automation together with all indexed factual and equational theorems in the included library. If the list of terms is empty, only equational theorems and facts in the library are used. If the list is omitted, it defaults to all indexed theorems in the library. Finally, if the list is _, the automation command becomes a macro that is expanded in a new automation command where _ is replaced with the list of theorems required to prove the sequent.

Table 4.16: auto-params

simple_auto_param	::=	width=nat	The maximal width of the search tree
	1	size=nat	The maximal number of nodes in the proof
	1	demod	Simplifies the current sequent using the current set of equations known to automation
	I	paramod	Try to close the goal performing unit-equality paramodulation
	1	fast_paramod	A bounded version of paramod that is granted to terminate quickly

Table 4.17: simple-auto-param

justification	$::=$	using term	Proof term manually
	।	auto_params	Call automation

Table 4.18: justification

Chapter 5

Extending the syntax

5.1 notation

notation usage "presentation" associativity with precedence p for content

Synopsis: notation [usage] "notation_lhs" [associativity] with precedence nat for notation_rhs
Action: Declares a mapping between the presentation AST presentation and the content AST content. The declared presentation AST fragment presentation is at precedence level \mathbf{p}. The precedence level is used to determine where parentheses must be inserted. In particular, the content AST fragment content is actually a pattern, since it contains placeholders (variables) for sub-ASTs. Every placeholder for a term is given an expected precedence level. Parentheses must be inserted around sub-ASTs having a precedence level strictly smaller than the expected one.
If presentation describes a binary infix operator and if no precedence level is explicitly given for the operator arguments, an associativity declaration can be given to automatically choose the right level for the operands. Otherwise, no associativity can be given.
If direction is omitted, the mapping is bi-directional and is used both during parsing and pretty-printing of terms. If direction is >, the mapping is used only during parsing; if it is <, it is used only during pretty-printing. Thus it is possible to use simple notations to type for writing the term, and nicer ones for rendering it.

Notation arguments:

	Notation arguments:		
usage	$::=$	$<$	Only for pretty-printing
	\mid	$>$	Only for parsing

Table 5.1: usage

associativity	$::=$	left associative	Left associative
	\mid	right associative	Right associative
	\mid	non associative	Non associative (default)

Table 5.2: associativity

notation_rhs	$::=$	unparsed_ast	TODO
	l	unparsed_meta	TODO

Table 5.3: notation_rhs

unparsed_ast	$::=$	A content level AST (a term which is parsed, but not disambiguated). @id is just an abbreviation for @\{id\} @symbol is just an abbreviation for @ \{'symbol $\}$

Table 5.4: unparsed_ast

enriched_term	:=	$\langle\langle$ A term that may contain occurrences of unparsed_meta, even as variable names in binders, and occurrences of csymbol \gg	TODO

Table 5.5: enriched_term

unparsed_meta	::=	\$\{level2_meta	TODO
	।	\$id	\$id is just an abbreviation for \$\{id\}
	1	\$	\$_ is just an abbreviation for \$ $\left\{_{-}\right.$\}

Table 5.6: unparsed_meta

level2_meta	::=	unparsed_ast	TODO
	I	term nat id	TODO
	I	number id	TODO
	I	ident $i d$	TODO
	I	fresh id	TODO
	I	anonymous	TODO
	I	id	TODO
	।	fold [left\|right] level2_meta rec id level2_meta	TODO
	1	default level2_meta level2_meta	TODO
	1	if level2_meta then level2_meta else level2_meta	TODO
	1	fail	TODO

Table 5.7: level2_meta

notation_lhs	$::=$	layout $[$ layout $] \ldots$

Table 5.8: notation_lhs

layout	::=	layout \sub layout	Subscript
	1	layout \sup layout	Superscript
	I	layout \below layout	
	I	layout \above layout	
	I	layout \over layout	
	1	layout \atop layout	
	I	layout \frac layout	Fraction
	1	linfrule layout layout layout	Inference rule (premises, conclusion, rule name)
	1	\sqrt layout	Square root
	I	\root layout \of layout	Generalized root
	I	hbox (layout [layout]...)	Horizontal box
	I	vbox (layout [layout]...)	Vertical box
	I	hvbox (layout [layout]...)	Horizontal and vertical box
	1	hovbox (layout [layout]...	Horizontal or vertical box
	I	break	Breakable space
	1	(layout [layout]...)	Group
	1	id	Placeholder for a term with no explicit precedence
	1	term nat id	Placeholder for a term with explicit expected precedence
	I	number $i d$	Placeholder for a natural number
	1	ident $i d$	Placeholder for an identifier
	I	literal	Literal
	1	opt layout	Optional layout (it can be omitted for parsing)
	1	list0 layout [sep literal]	List of layouts separated by sep (default: any blank)
	1	list1 layout [sep literal]	Non empty list of layouts separated by sep (default: any blank)
	1	mstyle id value (layout)	Style attributes like color \#ff0000
	I	mpadded id value (layout)	padding attributes like width -150\%
	1	$\begin{aligned} & \text { maction (layout) [(layout) } \\ & \ldots] \end{aligned}$	Alternative notations (output only)

Table 5.9: layout

literal	$::=$	symbol	Unicode symbol
	\mid	$n a t$	Natural number (a constant)
	\mid	,$i d$,	New keyword for the lexer

Table 5.10: literal

5.2 interpretation

```
interpretation "description" 'symbol p 1 ... p pn = rhs
```

Synopsis: interpretation qstring csymbol [interpretation_argument]... = interpretation_rhs
Action: It declares a bi-directional mapping $\{\ldots\}$ between the content-level AST ${ }^{\prime} \mathbf{s y m b o l} \mathbf{t}_{\mathbf{1}} \ldots \mathbf{t}_{\mathbf{n}}$ and the semantic term $\operatorname{rhs}\left[\left\{\mathbf{t}_{\mathbf{1}}\right\} / \mathbf{p}_{\mathbf{1}} ; \ldots ;\left\{\mathbf{t}_{\mathbf{n}}\right\} / \mathbf{p}_{\mathbf{n}}\right]$ (the simultaneous substitution in $\mathbf{r h s}$ of the interpretation $\{\ldots\}$ of every content-level actual argument $\mathbf{t}_{\mathbf{i}}$ for its corresponding formal parameter $\mathbf{p}_{\mathbf{i}}$). The description must be a textual description of the meaning associated to 'symbol by this interpretation, and is used by the user interface of Matita to provide feedback on the interpretation of ambiguous terms.

Interpretation arguments:

interpretation_argument	$=$	[η.]... id	A formal parameter. If the name of the formal parameter is prefixed by n symbols " η ", then the mapping performs (multiple) η-expansions to grant that the semantic actual parameter begins with at least n λ-abstractions.

Table 5.11: interpretation_argument

interpretation_rhs	$:=$	uri	A constant, specified by its URI
		A constant, specified by its name, or a bound variable.	
		If the constant name is ambiguous, the one corresponding to the last implicitly or explicitly	
			specified alias is used.
		An implicit parameter	

Table 5.12: interpretation_rhs

Chapter 6

Tacticals

6.1 Interactive proofs and definitions

An interactive definition is started by giving a definition command omitting the definiens. An interactive proof is started by using one of the proof commands omitting an explicit proof term.
An interactive proof or definition can and must be terminated by a qed command when no more sequents are left to prove. Between the command that starts the interactive session and the qed command the user must provide a procedural proof script made of tactics structured by means of tacticals.

In the tradition of the LCF system, tacticals can be considered higher order tactics. Their syntax is structured and they are executed atomically. On the contrary, in Matita the syntax of several tacticals is destructured into a sequence of tokens and tactics in such a way that is is possible to stop execution after every single token or tactic. The original semantics is preserved: the execution of the whole sequence yields the result expected by the original LCF-like tactical.

6.2 The proof status

During an interactive proof, the proof status is made of the set of sequents to prove and the partial proof built so far.
The partial proof can be inspected on demand in the CIC browser. It will be shown in pseudo-natural language produced on the fly from the proof term.

The set of sequents to prove is shown in the notebook of the authoring interface, in the top-right corner of the main window of Matita. Each tab shows a different sequent, named with a question mark followed by a number. The current role of the sequent, according to the following description, is also shown in the tab tag.

1. Selected sequents (name in boldface, e.g. ?3). The next tactic will be applied to every selected sequent, producing new selected sequents. Tacticals such as branching ("[") or "focus" can be used to change the set of selected sequents.
2. Sibling sequents (name prefixed by a vertical bar and their position, e.g. I_{3} ?2). When the set of selected sequents has more than one element, the user can decide to focus in turn on each of them. The branching tactical ("[") selects the first sequent only, marking every previously selected sequent as a sibling sequent. Each sibling sequent is given a different position. The tactical "2,3:" can be used to select one or more sibling sequents, different from the one proposed, according to their position. Once the user starts to work on the selected sibling sequents it becomes impossible to select a new set of siblings until the ("I") tactical is used to end work on the current one.
3. Automatically solved sibling sequents (name strokethrough, e.g. 1_{3} ?2). Sometimes a tactic can close by side effects a sibling sequent the user has not selected yet. The sequent is left in the automatically solved status in order for the user to explicitly accept (using the "skip" tactical) the automatic instantiation in the proof script. This way the correspondence between the number of branches in the proof script and the number of sequents generated in the proof is preserved.

6.3 Tacticals

proof-script $::=\quad$ proof-step $[$ proof-step]...

Table 6.1: proof script
Every proof step can be immediately executed.

proof-step	$=$		The tactical is applied to each selected sequent. Each new sequent becomes a selected sequent. The first selected sequent becomes the only one selected. All the remaining previously selected sequents are proposed to the user one at a time when the next "." is used. Nothing changes. Use this proof step as a separator in concrete syntax. Every selected sequent becomes a sibling sequent that constitute a branch in the proof. Moreover, the first sequent is also selected. Stop working on the current branch of the innermost branching proof. The sibling branches become the sibling sequents and the first one is also selected. The sibling sequents specified by the user become the next selected sequents. Every sibling branch not considered yet in the innermost branching proof becomes a selected sequent. Accept the automatically provided instantiation (not shown to the user) for the currently selected automatically closed sibling sequent. Stop analyzing branches for the innermost branching proof. Every sequent opened during the branching proof and not closed yet becomes a selected sequent. Selects the sequents specified by the user. The selected sequents must be completely closed (no new sequents left open) before doing an "unfocus that restores the current set of sibling branches. Used to match the innermost "focus" tactical when all the sequents selected by it have been closed. Until "unfocus" is performed, it is not possible
			to progress in the rest of the proof.

\begin{tabular}{|c|c|c|c|}
\hline LCF-tactical \& ::= \& tactic
LCF-tactical ; LCF-tactical

LCF-tactical $[$
$[L C F$-tactical $[1$

LCF-tactical $].$. \& | Applies the specified tactic. Applies the first tactical first and the second tactical to each sequent opened by the first one. |
| :--- |
| Applies the first tactical first and each tactical in the list of tacticals to the corresponding sequent opened by the first one. The number of tacticals provided in the list must be equal to the number of sequents opened by the first tactical. |

\hline \& 1 \& do nat LCF-tactical \& TODO

\hline \& I \& repeat $L C F$-tactical \& TODO

\hline \& 1 \& first [[LCF-tactical] [l LCF-tactical]...] \& TODO

\hline \& 1 \& try LCF-tactical \& TODO

\hline \& 1 \& solve [[LCF-tactical] [l LCF-tactical]...] \& TODO

\hline \& 1 \& (LCF-tactical) \& Used for grouping during parsing.

\hline
\end{tabular}

Table 6.3: tactics and LCF tacticals

Chapter 7

Tactics

7.1 Quick reference card

tactic	::=	@ sterm
	1	applyS sterm auto_params
	।	assumption
	I	lauto_params/.
	I	cases term pattern
	I	change pattern with sterm
	1	-id
	।	\% [nat] [\{sterm... $\}$]
	I	cut sterm
	I	* [as $i d]$
	I	destruct [(id....)] [skip (id...)]
	1	elim sterm pattern
	I	generalize pattern
	I	\# id
	I	\#_
	,	inversion sterm
	1	lapply sterm
	,	letin $i d \stackrel{\text { def }}{=}$ sterm
	I	\#\#
	,	normalize pattern [nodelta]
	I	[<l>] sterm pattern
	,	whd pattern [nodelta]

Table 7.1: tactics

7.2 apply

@t

Synopsis: @ sterm
Pre-conditions: \mathbf{t} must have type $\mathbf{T}_{\mathbf{1}} \rightarrow \ldots \rightarrow \mathbf{T}_{\mathbf{n}} \rightarrow \mathbf{G}$ where \mathbf{G} can be unified with the conclusion of the current sequent.
Action: It closes the current sequent by applying \mathbf{t} to \mathbf{n} implicit arguments (that become new sequents).

New sequents to prove: It opens a new sequent for each premise $\mathbf{T}_{\mathbf{i}}$ that is not instantiated by unification. $\mathbf{T}_{\mathbf{i}}$ is the conclusion of the \mathbf{i}-th new sequent to prove.

7.3 auto

/params/

Synopsis: Iauto_params/.
Pre-conditions: None, but the tactic may fail finding a proof if every proof is in the search space that is pruned away. Pruning is controlled by the optional params. Moreover, only lemmas whose type signature is a subset of the signature of the current sequent are considered. The signature of a sequent is essentially the set of constats appearing in it.

Action: It closes the current sequent by repeated application of rewriting steps (unless paramodulation is omitted), hypothesis and lemmas in the library.

New sequents to prove: None

7.4 intro

\# H

Synopsis: \#id
Pre-conditions: The conclusion of the sequent to prove must be an implication or a universal quantification.
Action: It applies the right introduction rule for implication, closing the current sequent.
New sequents to prove: It opens a new sequent to prove adding to the hypothesis the antecedent of the implication and setting the conclusion to the consequent of the implicaiton. The name of the new hypothesis is \mathbf{H}.

7.5 intro_clear

\#_

Synopsis: \#_

Pre-conditions: The conclusion of the sequent to prove must be an implication.
Action: It applies the "a fortiori" rule for implication, closing the current sequent.
New sequents to prove: It opens a new sequent whose conclusion is the conclusion of the implication of the original sequent.

7.6 macro_input

\#\#

Synopsis: \#\#

Pre-conditions: None.
Action: This macro expands to the longest possible list of $\mathbf{\#} \mathbf{H}_{\mathbf{i}}$ tactics. The names of the introduced hypotheses are automatically generated.

7.7 clear

$-\mathrm{H}$

Synopsis: -id
Pre-conditions: H must be an hypothesis of the current sequent to prove.
Action: It hides the hypothesis \mathbf{H} from the current sequent.
New sequents to prove: None

7.8 constructor

\%n \{args \}

Synopsis: \% [nat] [\{sterm...\}]

Pre-conditions: The conclusion of the current sequent must be an inductive type or the application of an inductive type with at least \mathbf{n} constructors.

Action: It applies the \mathbf{n}-th constructor of the inductive type of the conclusion of the current sequent to the arguments $\mathbf{a r g s}$. If \mathbf{n} is omitted, it defaults to 1 .

New sequents to prove: It opens a new sequent for each premise of the constructor that can not be inferred by unification. For more details, see the apply tactic.

7.9 decompose

* as H

Synopsis: * [as id]
Pre-conditions: The current conclusion must be of the form $\mathbf{T} \rightarrow \mathbf{G}$ where \mathbf{I} is an inductive type applied to its arguments, if any.
Action: It introduces a new hypothesis \mathbf{H} of type T. Then it proceeds by cases over \mathbf{H}. Finally, if the name \mathbf{H} is not specified, it clears the new hypothesis from all contexts.

New sequents to prove: The ones generated by case analysis.

7.10 rewrite

> p patt

Synopsis: [<<>] sterm pattern

Pre-conditions: \mathbf{p} must be the proof of an equality, possibly under some hypotheses.
Action: It looks in every term matched by patt for all the occurrences of the left hand side of the equality that \mathbf{p} proves (resp. the right hand side if < is used). Every occurence found is replaced with the opposite side of the equality.

New sequents to prove: It opens one new sequent for each hypothesis of the equality proved by \mathbf{p} that is not closed by unification.

7.11 applyS

```
applys t auto_params
```

Synopsis: applyS sterm auto_params
Pre-conditions: \mathbf{t} must have type $\mathbf{T}_{\mathbf{1}} \rightarrow \ldots \rightarrow \mathbf{T}_{\mathbf{n}} \rightarrow \mathbf{G}$.
Action: applyS is useful when apply fails because the current goal and the conclusion of the applied theorems are extensionally equivalent up to instantiation of metavariables, but cannot be unified. E.g. the goal is $\mathbf{P}(\mathbf{n} * \mathbf{O}+\mathbf{m})$ and the theorem to be applied proves $\forall \mathbf{m} . \mathbf{P}(\mathbf{m}+\mathbf{O})$.
It tries to automatically rewrite the current goal using auto paramodulation to make it unifiable with G. Then it closes the current sequent by applying \mathbf{t} to \mathbf{n} implicit arguments (that become new sequents). The auto_params parameters are passed directly to auto paramodulation.
New sequents to prove: It opens a new sequent for each premise $\mathbf{T}_{\mathbf{i}}$ that is not instantiated by unification. $\mathbf{T}_{\mathbf{i}}$ is the conclusion of the \mathbf{i}-th new sequent to prove.

7.12 assumption

assumption

Synopsis: assumption

Pre-conditions: There must exist an hypothesis whose type can be unified with the conclusion of the current sequent.
Action: It closes the current sequent exploiting an hypothesis.
New sequents to prove: None

7.13 cases

cases t pattern

Synopsis: cases term pattern
Pre-conditions: \mathbf{t} must inhabit an inductive type
Action: It proceed by cases on \mathbf{t}. The new generated hypothesis in each branch are named according to hyps. The elimintation predicate is restricted by pattern. In particular, if some hypothesis is listed in pattern, the hypothesis is generalized and cleared before proceeding by cases on t. Currently, we only support patterns of the form $\mathbf{H}_{\mathbf{1}} \ldots \mathbf{H}_{\mathbf{n}} \vdash \%$. This limitation will be lifted in the future.

New sequents to prove: One new sequent for each constructor of the type of \mathbf{t}. Each sequent has a new hypothesis for each argument of the constructor.

7.14 change

```
change patt with t
```

Synopsis: change pattern with sterm

Pre-conditions: Each subterm matched by the pattern must be convertible with the term \mathbf{t} disambiguated in the context of the matched subterm.

Action: It replaces the subterms of the current sequent matched by patt with the new term \mathbf{t}. For each subterm matched by the pattern, \mathbf{t} is disambiguated in the context of the subterm.

New sequents to prove: None.

7.15 cut

cut P

Synopsis: cut sterm

Pre-conditions: P must be a type.
Action: It closes the current sequent.
New sequents to prove: It opens two new sequents. The first one has conclusion $\mathbf{P} \rightarrow \mathbf{G}$ where \mathbf{G} is the old conclusion. The second sequent has conclusion \mathbf{P} and hypotheses the hypotheses of the current sequent to prove.

7.16 destruct

```
destruct ( }\mp@subsup{H}{0}{\prime}\ldots\ldots\quad\mp@subsup{H}{n}{\prime}) skip ( ( K _ .. K Km),
```


Synopsis: destruct [(id...)] [skip (id...)]

Pre-conditions: Each hypothesis $\mathbf{H}_{\mathbf{i}}$ must be either a Leibniz or a John Major equality where the two sides of the equality are possibly applied constructors of an inductive type.

Action: The tactic recursively compare the two sides of each equality looking for different constructors in corresponding position. If two of them are found, the tactic closes the current sequent by proving the absurdity of \mathbf{p}. Otherwise it adds a new hypothesis for each leaf of the formula that states the equality of the subformulae in the corresponding positions on the two sides of the equality. If the newly added hypothesis is an equality between a variable and a term, the variable is substituted for the term everywhere in the sequent, except for the hypotheses $\mathbf{K}_{\mathbf{j}}$, and it is then cleared from the list of hypotheses.

New sequents to prove: None.

7.17 elim

elim t pattern

Synopsis: elim sterm pattern

Pre-conditions: \mathbf{t} must inhabit an inductive type.
Action: It proceeds by cases on the values of \mathbf{t}, according to the most appropriate elimination principle for the current goal. The induction predicate is restricted by pattern. In particular, if some hypothesis is listed in pattern, the hypothesis is generalized and cleared before eliminating \mathbf{t}

New sequents to prove: It opens one new sequent for each case.

7.18 generalize

```
generalize patt
```


Synopsis: generalize pattern

Pre-conditions: All the terms matched by patt must be convertible and close in the context of the current sequent.
Action: It closes the current sequent by applying a stronger lemma that is proved using the new generated sequent.
New sequents to prove: It opens a new sequent where the current sequent conclusion \mathbf{G} is generalized to $\forall \mathbf{x} . \mathbf{G}\{\mathbf{x} / \mathbf{t}\}$ where $\{\mathbf{x} / \mathbf{t}\}$ is a notation for the replacement with \mathbf{x} of all the occurrences of the term \mathbf{t} matched by patt. If patt matches no subterm then \mathbf{t} is defined as the wanted part of the pattern.

7.19 inversion

inversion t

Synopsis: inversion sterm

Pre-conditions: The type of the term \mathbf{t} must be an inductive type or the application of an inductive type.
Action: It proceeds by cases on \mathbf{t} paying attention to the constraints imposed by the actual "right arguments" of the inductive type.

New sequents to prove: It opens one new sequent to prove for each case in the definition of the type of \mathbf{t}. With respect to a simple elimination, each new sequent has additional hypotheses that states the equalities of the "right parameters" of the inductive type with terms originally present in the sequent to prove. It uses either Leibniz or John Major equality for the new hypotheses, according to the included files.

7.20 lapply

lapply t

Synopsis: lapply sterm
Pre-conditions: None.
Action: It generalizes the conclusion of the current goal adding as a premise the type of \mathbf{t}, closing the current goal.
New sequents to prove: The new sequent has conclusion $\mathbf{T} \rightarrow \mathbf{G}$ where \mathbf{T} is the type of \mathbf{t} and \mathbf{G} the old conclusion.

7.21 letin

letin $\mathbf{x} \stackrel{\text { def }}{=} \mathrm{t}$
Synopsis: letin $i d \stackrel{\text { def }}{=}$ sterm
Pre-conditions: None.
Action: It adds to the context of the current sequent to prove a new definition $\mathbf{x} \stackrel{\text { def }}{=} \mathbf{t}$.
New sequents to prove: None.

7.22 normalize

```
normalize patt nodelta
```

Synopsis: normalize pattern [nodelta]
Pre-conditions: None.
Action: It replaces all the terms matched by patt with their $\beta \delta_{1} \zeta$-normal form. If nodelta is specified, δ-expansions are not performed.

New sequents to prove: None.

7.23 whd

whd patt nodelta

Synopsis: whd pattern [nodelta]
Pre-conditions: None.
Action: It replaces all the terms matched by patt with their $\beta \delta i \zeta$-weak-head normal form. If nodelta is specified, δ-expansions are not performed.

New sequents to prove: None.

Chapter 8

Declarative Tactics

8.1 Quick reference card

| tactic | ::= | = term [auto_params \| using term | using once term I proof] [done] |
| :---: | :---: | :---: |
| | I | assume id : sterm |
| | I | by induction hypothesis we know term (id) |
| | I | case id [(id : term)]... [(id : term)] |
| | I | conclude term |
| | 1 | justification done |
| | 1 | justification let id : term such that term (id) |
| | \| | let $i d=$ term |
| | I | obtain id term |
| | I | suppose term (id) |
| | \| | that is equivalent to term |
| | 1 | the thesis becomes term |
| | I | we need to prove term [(id)] |
| | I | we proceed by cases on term to prove term |
| | I | we proceed by induction on term to prove term |
| | I | justification we proved term [(id)] |

Table 8.1: tactics

8.2 assume

assume $\mathbf{x}: T$

Synopsis: assume $i d$: sterm
Pre-conditions: The conclusion of the sequent to prove must be a universal quantification.
Action: It applies the right introduction rule for the universal quantifier, closing the current sequent (in Natural Deduction this corresponds to the introduction rule for the quantifier).

New sequents to prove: It opens a new sequent to prove the quantified subformula adding $\mathbf{x}: \mathbf{T}$ to the hypotheses.

8.3 suppose

suppose A (H)

Synopsis: suppose term (id)

Pre-condition: The conclusion of the sequent to prove must be an implication.
Action: It applies the right introduction rule for the implication, closing the current sequent (in Natural Deduction this corresponds to the introduction rule for the implication).

New sequents to prove: It opens a new sequent to prove the consequent of the implication adding the antecedent \mathbf{A} to the hypotheses. The name of the new hypothesis is \mathbf{H}.

8.4 letin

let $\mathrm{x}:=\mathrm{T}$
Synopsis: let $i d=$ term
Pre-condition: None
Action: It adds a new local definition $\mathbf{x}:=\mathbf{T}$ to the context of the sequent to prove.
New sequents to prove: None.

8.5 that is equivalent to

that is equivalent to t

Synopsis: that is equivalent to term

Pre-condition: The user must have applied one of the following tactics immediately before applying this tactic: assume, suppose, we need to prove, by just we proved,the thesis becomes, that is equivalent to.
Action: If the tactic that was applied before this introduced a new hypothesis in the context, this tactic works on this hypothesis; otherwise, it works on the conclusion. Either way, if the term \mathbf{t} is beta-equivalent to the term $\mathbf{t} \mathbf{1}$ on which this tactic is working (i.e. they can be reduced to a common term), $\mathbf{t} \mathbf{1}$ is changed with \mathbf{t}. If the tactic that was applied before this tactic was that is equivalent to, and that tactic was working on a term $\mathbf{t 1}$, this tactic keeps working on $\mathbf{t 1}$.
New sequent to prove: If this tactic is working on the conclusion, a new sequent with the same hypotheses and the conclusion changed to \mathbf{t} is opened. If this tactic is working on the last introduced hypotesis, a new sequent with the same conclusion is opened. The hypotheses of this sequent are the same, except for the one on which the tactic is working on, which is changed with \mathbf{t}.

8.6 the thesis becomes

the thesis becomes P
Synopsis: the thesis becomes term
Pre-condition: The provided term \mathbf{P} must be identical to the current conclusion.
Action: It allows the user to start a chain of reductions on the conclusion with the tactic that is equivalent to, after stating the current conclusion.
New sequent to prove: None.

8.7 we need to prove

we need to prove T [(H)]
Synopsis: we need to prove term [(id)]
Pre-condition: None.
Action: If id is provided, it applies a logical cut on \mathbf{T}. Otherwise, it allows the user to start a chain of reductions on the conclusion with the tactic that is equivalent to.
New sequents to prove: If id is supplied, a new sequent with \mathbf{T} as the conclusion is opened, and a new sequent with the conclusion of the sequent on which this tactic was applied is opened, with $\mathbf{H}: \mathbf{T}$ added to the hypotheses.

8.8 we proved

```
justification we proved T [(id)]
```

Synopsis: justification we proved term [(id)]
Pre-condition: None.
Action: If id is supplied, a logical cut on \mathbf{T} is made. Otherwise, if \mathbf{T} is identical to the current conclusion, it allows the user to start a chain of reductions on the conclusion with the tactic that is equivalent to.

New sequent to prove: If id is supplied, a new sequent with \mathbf{T} as the conclusion is opened and then immediately closed using the supplied justification. A new sequent with the conclusion of the sequent on which this tactic was applied is opened, and a new hypotesis \mathbf{T} is added to the context, with name id. If id is not supplied, no new sequents are opened.

8.9 let such that

```
justification let x:T such that P (H)
```

Synopsis: justification let id : term such that term (id)

Pre-condition: None.

Action: It applies the left introduction rule of the existential quantifier on the formula $\exists \mathbf{x} . \mathbf{P}(\mathbf{x})$ (in Natural Deduction this corresponds to the elimination rule for the quantifier).

New sequent to prove: A new sequent with $\exists \mathbf{x} . \mathbf{P}(\mathbf{x})$ as the conclusion is opened and then immediately closed using the given justification. A new sequent with the conclusion of the sequent on which this tactic was applied is opened, and two new hypotheses \mathbf{x} : T and $\mathbf{H}: \mathbf{P}$ are added to the context.

8.10 we have

justification we have A (H1) and B (H2)
Synopsis: justification we have term (id) and term (id)
Pre-condition: None.
Action: It applies the left multiplicative introduction rule for the conjunction on the formula $\mathbf{A} \wedge \mathbf{B}$ (in Natural Deduction this corresponds to the elimination rule for the conjunction).
New sequent to prove: A new sequent with $\mathbf{A} \wedge \mathbf{B}$ as the conclusion is opened and then immediately closed using the given justification. A new sequent with the conclusion of the sequent on which this tactic was applied is opened, and two new hypotheses H1: A and H2:B are added to the context.

8.11 we proceed by induction on

```
we proceed by induction on t to prove P
```

Synopsis: we proceed by induction on term to prove term
Pre-condition: The type of \mathbf{t} must be an inductive type and \mathbf{P} must be identical to the current conclusion.
Action: It applies the induction principle on \mathbf{t} to prove \mathbf{P}.
New sequents to prove: It opens a new sequent for each constructor of the type of \mathbf{t}, each with the conclusion \mathbf{P} instantiated for the constructor. For the inductive constructors (i.e. if the inductive type is \mathbf{T}, constructors with an argument of type \mathbf{T}), the conclusion is a logical implication, where the antecedent is the inductive hypothesis for the constructor, and the consequent is \mathbf{P}.

8.12 we proceed by cases on

we proceed by cases on t to prove P

Synopsis: we proceed by cases on term to prove term
Pre-condition: The type of \mathbf{t} must be an inductive type and \mathbf{P} must be identical to the current conclusion.
Action: It proceeds by case-analysis on \mathbf{t}
New sequents to prove: It opens one new sequent for each constructor of the type of \mathbf{t}, each with the conclusion \mathbf{P} instantiated for the constructor.

8.13 case

case id (id1:T1) ... (idn:Tn)

Synopsis: case id $[($ id $:$ term $)] \ldots[($ id $:$ term $)]$
Pre-condition: The user must have started a proof by induction/cases that has not been concluded yet, id must be a constructor for the inductive type of the term under induction/case-analysis, and the case must not have already been proved.

Action: It starts the proof for the case id, where id1:T1,...,idn:Tn are the arguments of the constructor, each declared with its type.

New sequents to prove: The sequent for the case id.

8.14 by induction hypothesis we know

by induction hypothesis we know P (id)

Synopsis: by induction hypothesis we know term (id)
Pre-condition: The user must have started proving a case for a proof by induction/case-analysis.
Action: It introduces the inductive hypothesis.
New sequents to prove: None.

8.15 conclude

conclude t1

Synopsis: conclude term
Pre-condition: The current conclusion must be an equality $\mathbf{t} \mathbf{1}=\mathbf{t k}$
Action: It starts an equality chain on the conclusion. It allows the user to apply the tactic $=$ to continue the chain.
New sequent to prove: None.

8.16 obtain

obtain H t1

Synopsis: obtain id term

Pre-condition: None.

Action: It starts an equality chain $\mathbf{t} \mathbf{1}=$?, which, when concluded, will be added to hypoteses of the current sequent. It allows the user to apply the tactic $=$ to continue the chain.

New sequent to prove: A new sequent for $\mathbf{t 1}=$? is opened, a new sequent for ? is opened, and a new sequent with the conclusion of the sequent on which this tactic was applied is opened, with $\mathbf{H}: \mathbf{t 1}=$? added to its hypotheses. This hypotesis will be changed when the equality chain is concluded with $\mathbf{H}: \mathbf{t} \mathbf{1}=\mathbf{t k}$, where $\mathbf{t k}$ is the last term of the equality chain. The goal for ? can be safely ignored, as it will be automatically closed when the equality chain is concluded.

$8.17=$

= t2 justification

Synopsis: = term [auto_params | using term | using once term | proof] [done]
Pre-condition: The user must have started an equality chain with conclude or obtain that has not been concluded yet.
Action: It applies the transitivity of $=$ on the left-hand-side of the current conclusion, $\mathbf{t 2}$, and the right-hand-side of the current conclusion, using the given justification. If done is supplied, this represents the last step in the equality chain.

New sequent to prove: A new sequent for $\mathbf{l h s}=\mathbf{t 2}$ is opened and then immediately closed using the given justification. A new sequent with the conclusion $\mathbf{t} \mathbf{2}=\mathbf{r h s}$ is opened.

8.18 done

justification done

Synopsis: justification done
Pre-condition: The user is proving a sequent which was opened with the tactic we need to prove, or the user is proving a sequent which was opened with the tactic we proceed by induction/cases on, or the user is proving a chain of equalities that was started with either the tactic conclude or obtain.

Action: It closes the current sequent with the given justification.
New sequents to prove: None.

Chapter 9

Other commands

9.1 alias

alias id "s" = "def"
alias symbol "s" (instance n) = "def"
alias num (instance n) = "def"

Synopsis: alias $[\mathbf{i d}$ qstring $=$ qstring \mid symbol qstring $[(\mathbf{i n s t a n c e}$ nat $)]=$ qstring \mid num $[(\mathbf{i n s t a n c e}$ nat $)]=$ qstring $]$
Action: Used to give an hint to the disambiguating parser. When the parser is faced to the identifier (or symbol) s or to any number, it will prefer interpretations that "map s (or the number) to def". For identifiers, "def" is the URI of the interpretation. E.g.: cic:/matita/nat/nat.ind\#xpointer(1/1/1) for the first constructor of the first inductive type defined in the block of inductive type(s) cic:/matita/nat/nat.ind. For symbols and numbers, "def" is the label used to mark the wanted interpretation.
When a symbol or a number occurs several times in the term to be parsed, it is possible to give an hint only for the instance n. When the instance is omitted, the hint is valid for every occurrence.

Hints are automatically inserted in the script by Matita every time the user is interactively asked a question to disambiguate a term. This way the user won't be posed the same question twice when the script will be executed again.

9.2 check

check t

Synopsis: check sterm
Action: Opens a CIC browser window that shows \mathbf{t} together with its type. The command is immediately removed from the script.

9.3 coercion

coercion nocomposites $c: t y \stackrel{\text { def }}{=} u$ on $s: S$ to T

Synopsis: coercion [nocomposites] id [: term $\stackrel{\text { def }}{=}$ term on id : term to term]

Action: Declares \mathbf{c} as an implicit coercion. If only \mathbf{c} is given, \mathbf{u} is the constant named by $\mathbf{c}, \mathbf{t y}$ its declared type, \mathbf{s} the name of the last variable abstracted in in $\mathbf{t y}$, \mathbf{S} the type of this last variable and \mathbf{T} the target of $\mathbf{t y}$. The user can specify all these component to have full control on how the coercion is indexed. The type of the body of the coercion u must be convertible to the declared one ty. Let it be $\forall \mathbf{x 1 : T 1} \ldots \forall \mathbf{x}(\mathbf{n} \mathbf{- 1}): \mathbf{T}(\mathbf{n}-\mathbf{1})$.Tn. Then \mathbf{s} must be one of $\mathbf{x 1} \ldots \mathbf{x n}$ (possibly prefixed by _ if the product is non dependent). Let \mathbf{s} be $\mathbf{x i}$ in the following. Then \mathbf{S} must be $\mathbf{T i}$ where all bound variables are replaced by ?, and \mathbf{T} must be $\mathbf{T n}$ where all bound variable are replaced by ?. For example the following command declares a coercions from vectors of any length to lists of natural numbers.

```
coercion nocomposites v2l : \foralln:nat. \forallv:Vect nat n. List nat \stackrel{def}{=} l_of_v on _v : Vect
nat ? to List nat
```

Every time a term \mathbf{x} of a type that matches \mathbf{S} (Vect nat? here) is used with an expected type that matches \mathbf{T} (List nat here), Matita automatically replaces \mathbf{x} with (\mathbf{u} ? \ldots ? $\mathbf{x} \boldsymbol{?} \ldots$?) to avoid a typing error. Note that the position of \mathbf{x} is determined by \mathbf{s}.
Implicit coercions are not displayed to the user: (u?..? \mathbf{x}) is rendered simply as \mathbf{x}.
When a coercion \mathbf{u} is declared from source \mathbf{s} to target \mathbf{t} and there is already a coercion \mathbf{u} ' of target \mathbf{s} or source \mathbf{t}, a composite implicit coercion is automatically computed by Matita unless nocomposites is specified.
Note that Vect nat? can be replaced with Vect ? ? to index the coercion is a loose way.

9.4 include

include "s"

Synopsis: include qstring

Action: Every coercion, notation and interpretation that was active when the file \mathbf{s} was compiled last time is made active. The same happens for declarations of disambiguation hints (aliases). On the contrary, theorem and definitions declared in a file can be immediately used without including it.
The file \mathbf{s} is automatically compiled if it is not compiled yet.
If the file \mathbf{s} was already included, either directly or recursively, the commands does nothing.

9.5 include alias

include alias "s"

Synopsis: include alias qstring
Action: Every interpretation declared in the file \mathbf{s} is re-declared so to make it the preferred choice for disambiguation.

9.6 qed

qed

Synopsis: qed

Action: Saves and indexes the current interactive theorem or definition. In order to do this, the set of sequents still to be proved must be empty.

9.7 qed-

qed-

Synopsis: qed-
Action: Saves the current interactive theorem or definition without indexing. Therefore automation will ignore it. In order to do this, the set of sequents still to be proved must be empty.

9.8 unification hint

```
unification hint n := v1 : T1,... vi : Ti; h1 &#x225f; t1, ... hn &#x225f; tn \vdash tl
三tr.
```

Synopsis: unification hint nat $:=[$ id $[\mathbf{:}$ term $], ..] ;[$ id $\boldsymbol{\&} \# \mathbf{x} \mathbf{2 2 5 f} ;$ term,..$] \vdash$ term \equiv term
Action: Declares the hint at precedence \mathbf{n}
The file hints_declaration.ma must be included to declare hints with that syntax.
Unification hints are described in the paper "Hints in unification" by Asperti, Ricciotti, Sacerdoti and Tassi.

9.9 universe constraint

TODO

Chapter 10

License

Both Matita and this document are part of HELM, an Hypertextual, Electronic Library of Mathematics, developed at the Computer Science Department, University of Bologna, Italy.

HELM is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.
HELM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with HELM; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. A copy of the GNU General Public License is available at this link.

