(* Copyright (C) 2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) (* $Id$ *) open Printf module Ast = CicNotationPt let debug = false let debug_print s = if debug then prerr_endline (Lazy.force s) else () type interpretation_id = int let idref id t = Ast.AttributedTerm (`IdRef id, t) type term_info = { sort: (Cic.id, Ast.sort_kind) Hashtbl.t; uri: (Cic.id, UriManager.uri) Hashtbl.t; } let get_types uri = let o,_ = CicEnvironment.get_obj CicUniv.oblivion_ugraph uri in match o with | Cic.InductiveDefinition (l,_,lpsno,_) -> l, lpsno | _ -> assert false let name_of_inductive_type uri i = let types, _ = get_types uri in let (name, _, _, _) = try List.nth types i with Not_found -> assert false in name (* returns pairs *) let constructors_of_inductive_type uri i = let types, _ = get_types uri in let (_, _, _, constructors) = try List.nth types i with Not_found -> assert false in constructors (* returns name only *) let constructor_of_inductive_type uri i j = (try fst (List.nth (constructors_of_inductive_type uri i) (j-1)) with Not_found -> assert false) (* returns the number of left parameters *) let left_params_no_of_inductive_type uri = snd (get_types uri) let ast_of_acic0 ~output_type term_info acic k = let k = k term_info in let id_to_uris = term_info.uri in let register_uri id uri = Hashtbl.add id_to_uris id uri in let sort_of_id id = try Hashtbl.find term_info.sort id with Not_found -> prerr_endline (sprintf "warning: sort of id %s not found, using Type" id); `Type (CicUniv.fresh ()) in let aux_substs substs = Some (List.map (fun (uri, annterm) -> (UriManager.name_of_uri uri, k annterm)) substs) in let aux_context context = List.map (function | None -> None | Some annterm -> Some (k annterm)) context in let aux = function | Cic.ARel (id,_,_,b) -> idref id (Ast.Ident (b, None)) | Cic.AVar (id,uri,substs) -> register_uri id uri; idref id (Ast.Ident (UriManager.name_of_uri uri, aux_substs substs)) | Cic.AMeta (id,n,l) -> idref id (Ast.Meta (n, aux_context l)) | Cic.ASort (id,Cic.Prop) -> idref id (Ast.Sort `Prop) | Cic.ASort (id,Cic.Set) -> idref id (Ast.Sort `Set) | Cic.ASort (id,Cic.Type u) -> idref id (Ast.Sort (`Type u)) | Cic.ASort (id,Cic.CProp) -> idref id (Ast.Sort `CProp) | Cic.AImplicit (id, Some `Hole) -> idref id Ast.UserInput | Cic.AImplicit (id, _) -> idref id Ast.Implicit | Cic.AProd (id,n,s,t) -> let binder_kind = match sort_of_id id with | `Set | `Type _ -> `Pi | `Prop | `CProp -> `Forall in idref id (Ast.Binder (binder_kind, (CicNotationUtil.name_of_cic_name n, Some (k s)), k t)) | Cic.ACast (id,v,t) -> idref id (Ast.Cast (k v, k t)) | Cic.ALambda (id,n,s,t) -> idref id (Ast.Binder (`Lambda, (CicNotationUtil.name_of_cic_name n, Some (k s)), k t)) | Cic.ALetIn (id,n,s,ty,t) -> idref id (Ast.LetIn ((CicNotationUtil.name_of_cic_name n, Some (k ty)), k s, k t)) | Cic.AAppl (aid,(Cic.AConst _ as he::tl as args)) | Cic.AAppl (aid,(Cic.AMutInd _ as he::tl as args)) | Cic.AAppl (aid,(Cic.AMutConstruct _ as he::tl as args)) as t -> let last_n n l = let rec aux = function [] -> assert false | [_] as l -> l,1 | he::tl -> let (res,len) as res' = aux tl in if len < n then he::res,len + 1 else res' in match fst (aux l) with [] -> assert false | [t] -> t | Ast.AttributedTerm (_,(Ast.Appl l))::tl -> idref aid (Ast.Appl (l@tl)) | l -> idref aid (Ast.Appl l) in (match LibraryObjects.destroy_nat t with | Some n -> idref aid (Ast.Num (string_of_int n, -1)) | None -> let deannot_he = Deannotate.deannotate_term he in if CoercDb.is_a_coercion' deannot_he && !Acic2content.hide_coercions then (match CoercDb.is_a_coercion_to_funclass deannot_he with | None -> idref aid (last_n 1 (List.map k tl)) | Some i -> idref aid (last_n (i+1) (List.map k tl))) else idref aid (Ast.Appl (List.map k args))) | Cic.AAppl (aid,args) -> idref aid (Ast.Appl (List.map k args)) | Cic.AConst (id,uri,substs) -> register_uri id uri; idref id (Ast.Ident (UriManager.name_of_uri uri, aux_substs substs)) | Cic.AMutInd (id,uri,i,substs) -> let name = name_of_inductive_type uri i in let uri_str = UriManager.string_of_uri uri in let puri_str = sprintf "%s#xpointer(1/%d)" uri_str (i+1) in register_uri id (UriManager.uri_of_string puri_str); idref id (Ast.Ident (name, aux_substs substs)) | Cic.AMutConstruct (id,uri,i,j,substs) -> let name = constructor_of_inductive_type uri i j in let uri_str = UriManager.string_of_uri uri in let puri_str = sprintf "%s#xpointer(1/%d/%d)" uri_str (i + 1) j in register_uri id (UriManager.uri_of_string puri_str); idref id (Ast.Ident (name, aux_substs substs)) | Cic.AMutCase (id,uri,typeno,ty,te,patterns) -> let name = name_of_inductive_type uri typeno in let uri_str = UriManager.string_of_uri uri in let puri_str = sprintf "%s#xpointer(1/%d)" uri_str (typeno+1) in let ctor_puri j = UriManager.uri_of_string (sprintf "%s#xpointer(1/%d/%d)" uri_str (typeno+1) j) in let case_indty = name, Some (UriManager.uri_of_string puri_str) in let constructors = constructors_of_inductive_type uri typeno in let lpsno = left_params_no_of_inductive_type uri in let rec eat_branch n ty pat = match (ty, pat) with | Cic.Prod (_, _, t), _ when n > 0 -> eat_branch (pred n) t pat | Cic.Prod (_, _, t), Cic.ALambda (_, name, s, t') -> let (cv, rhs) = eat_branch 0 t t' in (CicNotationUtil.name_of_cic_name name, Some (k s)) :: cv, rhs | _, _ -> [], k pat in let j = ref 0 in let patterns = try List.map2 (fun (name, ty) pat -> incr j; let name,(capture_variables,rhs) = match output_type with `Term -> name, eat_branch lpsno ty pat | `Pattern -> "_", ([], k pat) in Ast.Pattern (name, Some (ctor_puri !j), capture_variables), rhs ) constructors patterns with Invalid_argument _ -> assert false in let indty = match output_type with `Pattern -> None | `Term -> Some case_indty in idref id (Ast.Case (k te, indty, Some (k ty), patterns)) | Cic.AFix (id, no, funs) -> let defs = List.map (fun (_, n, decr_idx, ty, bo) -> let params,bo = let rec aux = function Cic.ALambda (_,name,so,ta) -> let params,rest = aux ta in (CicNotationUtil.name_of_cic_name name,Some (k so)):: params, rest | t -> [],t in aux bo in let ty = let rec eat_pis = function 0,ty -> ty | n,Cic.AProd (_,_,_,ta) -> eat_pis (n - 1,ta) | n,ty -> (* I should do a whd here, but I have no context *) assert false in eat_pis ((List.length params),ty) in (params,(Ast.Ident (n, None), Some (k ty)), k bo, decr_idx)) funs in let name = try (match List.nth defs no with | _, (Ast.Ident (n, _), _), _, _ when n <> "_" -> n | _ -> assert false) with Not_found -> assert false in idref id (Ast.LetRec (`Inductive, defs, Ast.Ident (name, None))) | Cic.ACoFix (id, no, funs) -> let defs = List.map (fun (_, n, ty, bo) -> let params,bo = let rec aux = function Cic.ALambda (_,name,so,ta) -> let params,rest = aux ta in (CicNotationUtil.name_of_cic_name name,Some (k so)):: params, rest | t -> [],t in aux bo in let ty = let rec eat_pis = function 0,ty -> ty | n,Cic.AProd (_,_,_,ta) -> eat_pis (n - 1,ta) | n,ty -> (* I should do a whd here, but I have no context *) assert false in eat_pis ((List.length params),ty) in (params,(Ast.Ident (n, None), Some (k ty)), k bo, 0)) funs in let name = try (match List.nth defs no with | _, (Ast.Ident (n, _), _), _, _ when n <> "_" -> n | _ -> assert false) with Not_found -> assert false in idref id (Ast.LetRec (`CoInductive, defs, Ast.Ident (name, None))) in aux acic (* persistent state *) let level2_patterns32 = Hashtbl.create 211 let interpretations = Hashtbl.create 211 (* symb -> id list ref *) let compiled32 = ref None let pattern32_matrix = ref [] let get_compiled32 () = match !compiled32 with | None -> assert false | Some f -> Lazy.force f let set_compiled32 f = compiled32 := Some f let add_idrefs = List.fold_right (fun idref t -> Ast.AttributedTerm (`IdRef idref, t)) let instantiate32 term_info idrefs env symbol args = let rec instantiate_arg = function | Ast.IdentArg (n, name) -> let t = (try List.assoc name env with Not_found -> assert false) in let rec count_lambda = function | Ast.AttributedTerm (_, t) -> count_lambda t | Ast.Binder (`Lambda, _, body) -> 1 + count_lambda body | _ -> 0 in let rec add_lambda t n = if n > 0 then let name = CicNotationUtil.fresh_name () in Ast.Binder (`Lambda, (Ast.Ident (name, None), None), Ast.Appl [add_lambda t (n - 1); Ast.Ident (name, None)]) else t in add_lambda t (n - count_lambda t) in let head = let symbol = Ast.Symbol (symbol, 0) in add_idrefs idrefs symbol in if args = [] then head else Ast.Appl (head :: List.map instantiate_arg args) let rec ast_of_acic1 ~output_type term_info annterm = let id_to_uris = term_info.uri in let register_uri id uri = Hashtbl.add id_to_uris id uri in match (get_compiled32 ()) annterm with | None -> ast_of_acic0 ~output_type term_info annterm (ast_of_acic1 ~output_type) | Some (env, ctors, pid) -> let idrefs = List.map (fun annterm -> let idref = CicUtil.id_of_annterm annterm in (try register_uri idref (CicUtil.uri_of_term (Deannotate.deannotate_term annterm)) with Invalid_argument _ -> ()); idref) ctors in let env' = List.map (fun (name, term) -> name, ast_of_acic1 ~output_type term_info term) env in let _, symbol, args, _ = try Hashtbl.find level2_patterns32 pid with Not_found -> assert false in let ast = instantiate32 term_info idrefs env' symbol args in Ast.AttributedTerm (`IdRef (CicUtil.id_of_annterm annterm), ast) let load_patterns32 t = let t = HExtlib.filter_map (function (true, ap, id) -> Some (ap, id) | _ -> None) t in set_compiled32 (lazy (Acic2astMatcher.Matcher32.compiler t)) let ast_of_acic ~output_type id_to_sort annterm = debug_print (lazy ("ast_of_acic <- " ^ CicPp.ppterm (Deannotate.deannotate_term annterm))); let term_info = { sort = id_to_sort; uri = Hashtbl.create 211 } in let ast = ast_of_acic1 ~output_type term_info annterm in debug_print (lazy ("ast_of_acic -> " ^ CicNotationPp.pp_term ast)); ast, term_info.uri let counter = ref ~-1 let reset () = counter := ~-1;; let fresh_id = fun () -> incr counter; !counter let add_interpretation dsc (symbol, args) appl_pattern = let id = fresh_id () in Hashtbl.add level2_patterns32 id (dsc, symbol, args, appl_pattern); pattern32_matrix := (true, appl_pattern, id) :: !pattern32_matrix; load_patterns32 !pattern32_matrix; (try let ids = Hashtbl.find interpretations symbol in ids := id :: !ids with Not_found -> Hashtbl.add interpretations symbol (ref [id])); id let get_all_interpretations () = List.map (function (_, _, id) -> let (dsc, _, _, _) = try Hashtbl.find level2_patterns32 id with Not_found -> assert false in (id, dsc)) !pattern32_matrix let get_active_interpretations () = HExtlib.filter_map (function (true, _, id) -> Some id | _ -> None) !pattern32_matrix let set_active_interpretations ids = let pattern32_matrix' = List.map (function | (_, ap, id) when List.mem id ids -> (true, ap, id) | (_, ap, id) -> (false, ap, id)) !pattern32_matrix in pattern32_matrix := pattern32_matrix'; load_patterns32 !pattern32_matrix exception Interpretation_not_found let lookup_interpretations symbol = try HExtlib.list_uniq (List.sort Pervasives.compare (List.map (fun id -> let (dsc, _, args, appl_pattern) = try Hashtbl.find level2_patterns32 id with Not_found -> assert false in dsc, args, appl_pattern) !(Hashtbl.find interpretations symbol))) with Not_found -> raise Interpretation_not_found let remove_interpretation id = (try let _, symbol, _, _ = Hashtbl.find level2_patterns32 id in let ids = Hashtbl.find interpretations symbol in ids := List.filter ((<>) id) !ids; Hashtbl.remove level2_patterns32 id; with Not_found -> raise Interpretation_not_found); pattern32_matrix := List.filter (fun (_, _, id') -> id <> id') !pattern32_matrix; load_patterns32 !pattern32_matrix let _ = load_patterns32 [] let instantiate_appl_pattern env appl_pattern = let lookup name = try List.assoc name env with Not_found -> prerr_endline (sprintf "Name %s not found" name); assert false in let rec aux = function | Ast.UriPattern uri -> CicUtil.term_of_uri uri | Ast.ImplicitPattern -> Cic.Implicit None | Ast.VarPattern name -> lookup name | Ast.ApplPattern terms -> Cic.Appl (List.map aux terms) in aux appl_pattern