(* Copyright (C) 2003-2005, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) module C = Cic module Pp = CicPp module I = CicInspect module S = CicSubstitution module DTI = DoubleTypeInference module HEL = HExtlib module PEH = ProofEngineHelpers module TC = CicTypeChecker module Un = CicUniv module H = ProceduralHelpers module Cl = ProceduralClassify (* term preprocessing: optomization 1 ***************************************) let defined_premise = "DEFINED" let get_type msg c bo = try let ty, _ = TC.type_of_aux' [] c bo Un.empty_ugraph in ty with e -> failwith (msg ^ ": " ^ Printexc.to_string e) let define c v = let name = C.Name defined_premise in let ty = get_type "define" c v in C.LetIn (name, v, ty, C.Rel 1) let clear_absts m = let rec aux k n = function | C.Lambda (s, v, t) when k > 0 -> C.Lambda (s, v, aux (pred k) n t) | C.Lambda (_, _, t) when n > 0 -> aux 0 (pred n) (S.lift (-1) t) | t when n > 0 -> Printf.eprintf "CicPPP clear_absts: %u %s\n" n (Pp.ppterm t); assert false | t -> t in aux m let rec add_abst k = function | C.Lambda (s, v, t) when k > 0 -> C.Lambda (s, v, add_abst (pred k) t) | t when k > 0 -> assert false | t -> C.Lambda (C.Anonymous, C.Implicit None, S.lift 1 t) let rec opt1_letin g es c name v w t = let name = H.mk_fresh_name c name in let entry = Some (name, C.Def (v, w)) in let g t = if DTI.does_not_occur 1 t then begin let x = S.lift (-1) t in HLog.warn "Optimizer: remove 1"; opt1_proof g true c x end else let g = function | C.LetIn (nname, vv, ww, tt) when H.is_proof c v -> let eentry = Some (nname, C.Def (vv, ww)) in let ttw = get_type "opt1_letin 1" (eentry :: c) tt in let x = C.LetIn (nname, vv, ww, C.LetIn (name, tt, ttw, S.lift_from 2 1 t)) in HLog.warn "Optimizer: swap 1"; opt1_proof g true c x | v when H.is_proof c v && H.is_atomic v -> let x = S.subst v t in HLog.warn "Optimizer: remove 5"; opt1_proof g true c x | v -> g (C.LetIn (name, v, w, t)) in if es then opt1_term g es c v else g v in if es then opt1_proof g es (entry :: c) t else g t and opt1_lambda g es c name w t = let name = H.mk_fresh_name c name in let entry = Some (name, C.Decl w) in let g t = g (C.Lambda (name, w, t)) in if es then opt1_proof g es (entry :: c) t else g t and opt1_appl g es c t vs = let g vs = let g = function | C.LetIn (mame, vv, tyty, tt) -> let vs = List.map (S.lift 1) vs in let x = C.LetIn (mame, vv, tyty, C.Appl (tt :: vs)) in HLog.warn "Optimizer: swap 2"; opt1_proof g true c x | C.Lambda (name, ww, tt) -> let v, vs = List.hd vs, List.tl vs in let w = get_type "opt1_appl 1" c v in let x = C.Appl (C.LetIn (name, v, w, tt) :: vs) in HLog.warn "Optimizer: remove 2"; opt1_proof g true c x | C.Appl vvs -> let x = C.Appl (vvs @ vs) in HLog.warn "Optimizer: nested application"; opt1_proof g true c x | t -> let rec aux d rvs = function | [], _ -> let x = C.Appl (t :: List.rev rvs) in if d then opt1_proof g true c x else g x | v :: vs, (cc, bb) :: cs -> if H.is_not_atomic v && I.S.mem 0 cc && bb then begin HLog.warn "Optimizer: anticipate 1"; aux true (define c v :: rvs) (vs, cs) end else aux d (v :: rvs) (vs, cs) | _, [] -> assert false in let h () = let classes, conclusion = Cl.classify c (H.get_type c t) in let csno, vsno = List.length classes, List.length vs in if csno < vsno then let vvs, vs = HEL.split_nth csno vs in let x = C.Appl (define c (C.Appl (t :: vvs)) :: vs) in HLog.warn "Optimizer: anticipate 2"; opt1_proof g true c x else match conclusion, List.rev vs with | Some _, rv :: rvs when csno = vsno && H.is_not_atomic rv -> let x = C.Appl (t :: List.rev rvs @ [define c rv]) in HLog.warn "Optimizer: anticipate 3"; opt1_proof g true c x | _ (* Some _, _ *) -> g (C.Appl (t :: vs)) (* | None, _ -> aux false [] (vs, classes) *) in let rec aux h prev = function | C.LetIn (name, vv, tyty, tt) :: vs -> let t = S.lift 1 t in let prev = List.map (S.lift 1) prev in let vs = List.map (S.lift 1) vs in let y = C.Appl (t :: List.rev prev @ tt :: vs) in let ww = get_type "opt1_appl 2" c vv in let x = C.LetIn (name, vv, ww, y) in HLog.warn "Optimizer: swap 3"; opt1_proof g true c x | v :: vs -> aux h (v :: prev) vs | [] -> h () in aux h [] vs in if es then opt1_proof g es c t else g t in if es then H.list_map_cps g (fun h -> opt1_term h es c) vs else g vs and opt1_mutcase g es c uri tyno outty arg cases = let eliminator = H.get_default_eliminator c uri tyno outty in let lpsno, (_, _, _, constructors) = H.get_ind_type uri tyno in let ps, sort_disp = H.get_ind_parameters c arg in let lps, rps = HEL.split_nth lpsno ps in let rpsno = List.length rps in let predicate = clear_absts rpsno (1 - sort_disp) outty in let is_recursive t = I.S.mem tyno (I.get_mutinds_of_uri uri t) in let map2 case (_, cty) = let map (h, case, k) (_, premise) = if h > 0 then pred h, case, k else if is_recursive premise then 0, add_abst k case, k + 2 else 0, case, succ k in let premises, _ = PEH.split_with_whd (c, cty) in let _, lifted_case, _ = List.fold_left map (lpsno, case, 1) (List.rev (List.tl premises)) in lifted_case in let lifted_cases = List.map2 map2 cases constructors in let args = eliminator :: lps @ predicate :: lifted_cases @ rps @ [arg] in let x = H.refine c (C.Appl args) in HLog.warn "Optimizer: remove 3"; opt1_proof g es c x and opt1_cast g es c t w = let g t = HLog.warn "Optimizer: remove 4"; g t in if es then opt1_proof g es c t else g t and opt1_other g es c t = g t and opt1_proof g es c = function | C.LetIn (name, v, ty, t) -> opt1_letin g es c name v ty t | C.Lambda (name, w, t) -> opt1_lambda g es c name w t | C.Appl (t :: v :: vs) -> opt1_appl g es c t (v :: vs) | C.Appl [t] -> opt1_proof g es c t | C.MutCase (u, n, t, v, ws) -> opt1_mutcase g es c u n t v ws | C.Cast (t, w) -> opt1_cast g es c t w | t -> opt1_other g es c t and opt1_term g es c t = if H.is_proof c t then opt1_proof g es c t else g t (* term preprocessing: optomization 2 ***************************************) let expanded_premise = "EXPANDED" let eta_expand g tys t = assert (tys <> []); let name i = Printf.sprintf "%s%u" expanded_premise i in let lambda i ty t = C.Lambda (C.Name (name i), ty, t) in let arg i = C.Rel (succ i) in let rec aux i f a = function | [] -> f, a | (_, ty) :: tl -> aux (succ i) (H.compose f (lambda i ty)) (arg i :: a) tl in let n = List.length tys in let absts, args = aux 0 H.identity [] tys in let t = match S.lift n t with | C.Appl ts -> C.Appl (ts @ args) | t -> C.Appl (t :: args) in g (absts t) let rec opt2_letin g c name v w t = let entry = Some (name, C.Def (v, w)) in let g t = let g v = g (C.LetIn (name, v, w, t)) in opt2_term g c v in opt2_proof g (entry :: c) t and opt2_lambda g c name w t = let entry = Some (name, C.Decl w) in let g t = g (C.Lambda (name, w, t)) in opt2_proof g (entry :: c) t and opt2_appl g c t vs = let g vs = let x = C.Appl (t :: vs) in let vsno = List.length vs in let _, csno = PEH.split_with_whd (c, H.get_type c t) in if vsno < csno then let tys, _ = PEH.split_with_whd (c, H.get_type c x) in let tys = List.rev (List.tl tys) in let tys, _ = HEL.split_nth (csno - vsno) tys in HLog.warn "Optimizer: eta 1"; eta_expand g tys x else g x in H.list_map_cps g (fun h -> opt2_term h c) vs and opt2_other g c t = let tys, csno = PEH.split_with_whd (c, H.get_type c t) in if csno > 0 then begin let tys = List.rev (List.tl tys) in HLog.warn "Optimizer: eta 2"; eta_expand g tys t end else g t and opt2_proof g c = function | C.LetIn (name, v, w, t) -> opt2_letin g c name v w t | C.Lambda (name, w, t) -> opt2_lambda g c name w t | C.Appl (t :: vs) -> opt2_appl g c t vs | t -> opt2_other g c t and opt2_term g c t = if H.is_proof c t then opt2_proof g c t else g t (* object preprocessing *****************************************************) let optimize_obj = function | C.Constant (name, Some bo, ty, pars, attrs) -> let bo, ty = H.cic_bc [] bo, H.cic_bc [] ty in let g bo = Printf.eprintf "Optimized : %s\nPost Nodes: %u\n" (Pp.ppterm bo) (I.count_nodes 0 bo); let _ = H.get_type [] (C.Cast (bo, ty)) in C.Constant (name, Some bo, ty, pars, attrs) in Printf.eprintf "BEGIN: %s\nPre Nodes : %u\n" name (I.count_nodes 0 bo); begin try opt1_term g (* (opt2_term g []) *) true [] bo with e -> failwith ("PPP: " ^ Printexc.to_string e) end | obj -> obj