(* Copyright (C) 2004, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://helm.cs.unibo.it/ *) (* $Id$ *) module C = Cic exception Meta_not_found of int exception Subst_not_found of int let lookup_meta index metasenv = try List.find (fun (index', _, _) -> index = index') metasenv with Not_found -> raise (Meta_not_found index) let lookup_subst n subst = try List.assoc n subst with Not_found -> raise (Subst_not_found n) let exists_meta index = List.exists (fun (index', _, _) -> (index = index')) (* clean_up_meta take a substitution, a metasenv a meta_inex and a local context l and clean up l with respect to the hidden hipothesis in the canonical context *) let clean_up_local_context subst metasenv n l = let cc = (try let (cc,_,_) = lookup_subst n subst in cc with Subst_not_found _ -> try let (_,cc,_) = lookup_meta n metasenv in cc with Meta_not_found _ -> assert false) in (try List.map2 (fun t1 t2 -> match t1,t2 with None , _ -> None | _ , t -> t) cc l with Invalid_argument _ -> assert false) let is_closed = let module C = Cic in let rec is_closed k = function C.Rel m when m > k -> false | C.Rel m -> true | C.Meta (_,l) -> List.fold_left (fun i t -> i && (match t with None -> true | Some t -> is_closed k t) ) true l | C.Sort _ -> true | C.Implicit _ -> assert false | C.Cast (te,ty) -> is_closed k te && is_closed k ty | C.Prod (name,so,dest) -> is_closed k so && is_closed (k+1) dest | C.Lambda (_,so,dest) -> is_closed k so && is_closed (k+1) dest | C.LetIn (_,so,ty,dest) -> is_closed k so && is_closed k ty && is_closed (k+1) dest | C.Appl l -> List.fold_right (fun x i -> i && is_closed k x) l true | C.Var (_,exp_named_subst) | C.Const (_,exp_named_subst) | C.MutInd (_,_,exp_named_subst) | C.MutConstruct (_,_,_,exp_named_subst) -> List.fold_right (fun (_,x) i -> i && is_closed k x) exp_named_subst true | C.MutCase (_,_,out,te,pl) -> is_closed k out && is_closed k te && List.fold_right (fun x i -> i && is_closed k x) pl true | C.Fix (_,fl) -> let len = List.length fl in let k_plus_len = k + len in List.fold_right (fun (_,_,ty,bo) i -> i && is_closed k ty && is_closed k_plus_len bo ) fl true | C.CoFix (_,fl) -> let len = List.length fl in let k_plus_len = k + len in List.fold_right (fun (_,ty,bo) i -> i && is_closed k ty && is_closed k_plus_len bo ) fl true in is_closed 0 ;; let rec is_meta_closed = function C.Rel _ -> true | C.Meta _ -> false | C.Sort _ -> true | C.Implicit _ -> assert false | C.Cast (te,ty) -> is_meta_closed te && is_meta_closed ty | C.Prod (name,so,dest) -> is_meta_closed so && is_meta_closed dest | C.Lambda (_,so,dest) -> is_meta_closed so && is_meta_closed dest | C.LetIn (_,so,ty,dest) -> is_meta_closed so && is_meta_closed ty && is_meta_closed dest | C.Appl l -> not (List.exists (fun x -> not (is_meta_closed x)) l) | C.Var (_,exp_named_subst) | C.Const (_,exp_named_subst) | C.MutInd (_,_,exp_named_subst) | C.MutConstruct (_,_,_,exp_named_subst) -> not (List.exists (fun (_,x) -> not (is_meta_closed x)) exp_named_subst) | C.MutCase (_,_,out,te,pl) -> is_meta_closed out && is_meta_closed te && not (List.exists (fun x -> not (is_meta_closed x)) pl) | C.Fix (_,fl) -> not (List.exists (fun (_,_,ty,bo) -> not (is_meta_closed ty) || not (is_meta_closed bo)) fl) | C.CoFix (_,fl) -> not (List.exists (fun (_,ty,bo) -> not (is_meta_closed ty) || not (is_meta_closed bo)) fl) ;; let xpointer_RE = Str.regexp "\\([^#]+\\)#xpointer(\\(.*\\))" let slash_RE = Str.regexp "/" let term_of_uri uri = let s = UriManager.string_of_uri uri in try (if UriManager.uri_is_con uri then C.Const (uri, []) else if UriManager.uri_is_var uri then C.Var (uri, []) else if not (Str.string_match xpointer_RE s 0) then raise (UriManager.IllFormedUri s) else let (baseuri,xpointer) = (Str.matched_group 1 s, Str.matched_group 2 s) in let baseuri = UriManager.uri_of_string baseuri in (match Str.split slash_RE xpointer with | [_; tyno] -> C.MutInd (baseuri, int_of_string tyno - 1, []) | [_; tyno; consno] -> C.MutConstruct (baseuri, int_of_string tyno - 1, int_of_string consno, []) | _ -> raise Exit)) with | Exit | Failure _ | Not_found -> raise (UriManager.IllFormedUri s) let uri_of_term = function | C.Const (uri, _) | C.Var (uri, _) -> uri | C.MutInd (baseuri, tyno, _) -> UriManager.uri_of_string (Printf.sprintf "%s#xpointer(1/%d)" (UriManager.string_of_uri baseuri) (tyno+1)) | C.MutConstruct (baseuri, tyno, consno, _) -> UriManager.uri_of_string (Printf.sprintf "%s#xpointer(1/%d/%d)" (UriManager.string_of_uri baseuri) (tyno + 1) consno) | _ -> raise (Invalid_argument "uri_of_term") (* let pack terms = List.fold_right (fun term acc -> C.Prod (C.Anonymous, term, acc)) terms (C.Sort (C.Type (CicUniv.fresh ()))) let rec unpack = function | C.Prod (C.Anonymous, term, C.Sort (C.Type _)) -> [term] | C.Prod (C.Anonymous, term, tgt) -> term :: unpack tgt | _ -> assert false *) let rec strip_prods n = function | t when n = 0 -> t | C.Prod (_, _, tgt) when n > 0 -> strip_prods (n-1) tgt | _ -> failwith "not enough prods" let params_of_obj = function | C.Constant (_, _, _, params, _) | C.Variable (_, _, _, params, _) | C.CurrentProof (_, _, _, _, params, _) | C.InductiveDefinition (_, params, _, _) -> params let attributes_of_obj = function | C.Constant (_, _, _, _, attributes) | C.Variable (_, _, _, _, attributes) | C.CurrentProof (_, _, _, _, _, attributes) | C.InductiveDefinition (_, _, _, attributes) -> attributes let is_generated obj = List.exists ((=) `Generated) (attributes_of_obj obj) let arity_of_composed_coercion obj = let attrs = attributes_of_obj obj in try let tag=List.find (function `Class (`Coercion _) -> true|_->false) attrs in match tag with | `Class (`Coercion n) -> n | _-> assert false with Not_found -> 0 ;; let projections_of_record obj uri = let attrs = attributes_of_obj obj in try let tag=List.find (function `Class (`Record _) -> true|_->false) attrs in match tag with | `Class (`Record l) -> List.map (fun (name,_,_) -> let buri = UriManager.buri_of_uri uri in let puri = UriManager.uri_of_string (buri ^ "/" ^ name ^ ".con") in puri) l | _-> assert false with Not_found -> [] ;; let rec mk_rels howmany from = match howmany with | 0 -> [] | _ -> (C.Rel (howmany + from)) :: (mk_rels (howmany-1) from) let id_of_annterm = function | C.ARel (id,_,_,_) | C.AVar (id,_,_) | C.AMeta (id,_,_) | C.ASort (id,_) | C.AImplicit (id,_) | C.ACast (id,_,_) | C.AProd (id,_,_,_) | C.ALambda (id,_,_,_) | C.ALetIn (id,_,_,_,_) | C.AAppl (id,_) | C.AConst (id,_,_) | C.AMutInd (id,_,_,_) | C.AMutConstruct (id,_,_,_,_) | C.AMutCase (id,_,_,_,_,_) | C.AFix (id,_,_) | C.ACoFix (id,_,_) -> id let rec rehash_term = let module C = Cic in let recons uri = UriManager.uri_of_string (UriManager.string_of_uri uri) in function | (C.Rel _) as t -> t | C.Var (uri,exp_named_subst) -> let uri' = recons uri in let exp_named_subst' = List.map (function (uri,t) ->(recons uri,rehash_term t)) exp_named_subst in C.Var (uri',exp_named_subst') | C.Meta (i,l) -> let l' = List.map (function None -> None | Some t -> Some (rehash_term t) ) l in C.Meta(i,l') | C.Sort (C.Type u) -> CicUniv.assert_univ u; C.Sort (C.Type (CicUniv.recons_univ u)) | C.Sort _ as t -> t | C.Implicit _ as t -> t | C.Cast (te,ty) -> C.Cast (rehash_term te, rehash_term ty) | C.Prod (n,s,t) -> C.Prod (n, rehash_term s, rehash_term t) | C.Lambda (n,s,t) -> C.Lambda (n, rehash_term s, rehash_term t) | C.LetIn (n,s,ty,t) -> C.LetIn (n, rehash_term s, rehash_term ty, rehash_term t) | C.Appl l -> C.Appl (List.map rehash_term l) | C.Const (uri,exp_named_subst) -> let uri' = recons uri in let exp_named_subst' = List.map (function (uri,t) -> (recons uri,rehash_term t)) exp_named_subst in C.Const (uri',exp_named_subst') | C.MutInd (uri,tyno,exp_named_subst) -> let uri' = recons uri in let exp_named_subst' = List.map (function (uri,t) -> (recons uri,rehash_term t)) exp_named_subst in C.MutInd (uri',tyno,exp_named_subst') | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> let uri' = recons uri in let exp_named_subst' = List.map (function (uri,t) -> (recons uri,rehash_term t)) exp_named_subst in C.MutConstruct (uri',tyno,consno,exp_named_subst') | C.MutCase (uri,i,outty,t,pl) -> C.MutCase (recons uri, i, rehash_term outty, rehash_term t, List.map rehash_term pl) | C.Fix (i, fl) -> let liftedfl = List.map (fun (name, i, ty, bo) -> (name, i, rehash_term ty, rehash_term bo)) fl in C.Fix (i, liftedfl) | C.CoFix (i, fl) -> let liftedfl = List.map (fun (name, ty, bo) -> (name, rehash_term ty, rehash_term bo)) fl in C.CoFix (i, liftedfl) let rehash_obj = let module C = Cic in let recons uri = UriManager.uri_of_string (UriManager.string_of_uri uri) in function C.Constant (name,bo,ty,params,attrs) -> let bo' = match bo with None -> None | Some bo -> Some (rehash_term bo) in let ty' = rehash_term ty in let params' = List.map recons params in C.Constant (name, bo', ty', params',attrs) | C.CurrentProof (name,conjs,bo,ty,params,attrs) -> let conjs' = List.map (function (i,hyps,ty) -> (i, List.map (function None -> None | Some (name,C.Decl t) -> Some (name,C.Decl (rehash_term t)) | Some (name,C.Def (bo,ty)) -> Some (name,C.Def (rehash_term bo, rehash_term ty))) hyps, rehash_term ty)) conjs in let bo' = rehash_term bo in let ty' = rehash_term ty in let params' = List.map recons params in C.CurrentProof (name, conjs', bo', ty', params',attrs) | C.Variable (name,bo,ty,params,attrs) -> let bo' = match bo with None -> None | Some bo -> Some (rehash_term bo) in let ty' = rehash_term ty in let params' = List.map recons params in C.Variable (name, bo', ty', params',attrs) | C.InductiveDefinition (tl,params,paramsno,attrs) -> let params' = List.map recons params in let tl' = List.map (function (name, inductive, ty, constructors) -> name, inductive, rehash_term ty, (List.map (function (name, ty) -> name, rehash_term ty) constructors)) tl in C.InductiveDefinition (tl', params', paramsno, attrs) let rec metas_of_term = function | C.Meta (i, c) -> [i,c] | C.Var (_, ens) | C.Const (_, ens) | C.MutInd (_, _, ens) | C.MutConstruct (_, _, _, ens) -> List.flatten (List.map (fun (u, t) -> metas_of_term t) ens) | C.Cast (s, t) | C.Prod (_, s, t) | C.Lambda (_, s, t) -> (metas_of_term s) @ (metas_of_term t) | C.LetIn (_, s, ty, t) -> (metas_of_term s) @ (metas_of_term ty) @ (metas_of_term t) | C.Appl l -> List.flatten (List.map metas_of_term l) | C.MutCase (uri, i, s, t, l) -> (metas_of_term s) @ (metas_of_term t) @ (List.flatten (List.map metas_of_term l)) | C.Fix (i, il) -> List.flatten (List.map (fun (s, i, t1, t2) -> (metas_of_term t1) @ (metas_of_term t2)) il) | C.CoFix (i, il) -> List.flatten (List.map (fun (s, t1, t2) -> (metas_of_term t1) @ (metas_of_term t2)) il) | _ -> [] ;; module MetaOT = struct type t = int * C.term option list let compare = Pervasives.compare end module S = Set.Make(MetaOT) let rec metas_of_term_set = function | C.Meta (i, c) -> S.singleton (i,c) | C.Var (_, ens) | C.Const (_, ens) | C.MutInd (_, _, ens) | C.MutConstruct (_, _, _, ens) -> List.fold_left (fun s (_,t) -> S.union s (metas_of_term_set t)) S.empty ens | C.Cast (s, t) | C.Prod (_, s, t) | C.Lambda (_, s, t) -> S.union (metas_of_term_set s) (metas_of_term_set t) | C.LetIn (_, s, ty, t) -> S.union (metas_of_term_set s) (S.union (metas_of_term_set ty) (metas_of_term_set t)) | C.Appl l -> List.fold_left (fun s t -> S.union s (metas_of_term_set t)) S.empty l | C.MutCase (uri, i, s, t, l) -> S.union (S.union (metas_of_term_set s) (metas_of_term_set t)) (List.fold_left (fun s t -> S.union s (metas_of_term_set t)) S.empty l) | C.Fix (_, il) -> (List.fold_left (fun s (_,_,t1,t2) -> S.union s (S.union (metas_of_term_set t1) (metas_of_term_set t2)))) S.empty il | C.CoFix (i, il) -> (List.fold_left (fun s (_,t1,t2) -> S.union s (S.union (metas_of_term_set t1) (metas_of_term_set t2)))) S.empty il | _ -> S.empty ;; let metas_of_term_set t = let s = metas_of_term_set t in S.elements s ;; (* syntactic_equality up to the *) (* distinction between fake dependent products *) (* and non-dependent products, alfa-conversion *) let alpha_equivalence = let rec aux t t' = if t = t' then true else match t,t' with C.Var (uri1,exp_named_subst1), C.Var (uri2,exp_named_subst2) -> UriManager.eq uri1 uri2 && aux_exp_named_subst exp_named_subst1 exp_named_subst2 | C.Cast (te,ty), C.Cast (te',ty') -> aux te te' && aux ty ty' | C.Prod (_,s,t), C.Prod (_,s',t') -> aux s s' && aux t t' | C.Lambda (_,s,t), C.Lambda (_,s',t') -> aux s s' && aux t t' | C.LetIn (_,s,ty,t), C.LetIn(_,s',ty',t') -> aux s s' && aux ty ty' && aux t t' | C.Appl l, C.Appl l' when List.length l = List.length l' -> (try List.fold_left2 (fun b t1 t2 -> b && aux t1 t2) true l l' with Invalid_argument _ -> false) | C.Const (uri,exp_named_subst1), C.Const (uri',exp_named_subst2) -> UriManager.eq uri uri' && aux_exp_named_subst exp_named_subst1 exp_named_subst2 | C.MutInd (uri,i,exp_named_subst1), C.MutInd (uri',i',exp_named_subst2) -> UriManager.eq uri uri' && i = i' && aux_exp_named_subst exp_named_subst1 exp_named_subst2 | C.MutConstruct (uri,i,j,exp_named_subst1), C.MutConstruct (uri',i',j',exp_named_subst2) -> UriManager.eq uri uri' && i = i' && j = j' && aux_exp_named_subst exp_named_subst1 exp_named_subst2 | C.MutCase (sp,i,outt,t,pl), C.MutCase (sp',i',outt',t',pl') -> UriManager.eq sp sp' && i = i' && aux outt outt' && aux t t' && (try List.fold_left2 (fun b t1 t2 -> b && aux t1 t2) true pl pl' with Invalid_argument _ -> false) | C.Fix (i,fl), C.Fix (i',fl') -> i = i' && (try List.fold_left2 (fun b (_,i,ty,bo) (_,i',ty',bo') -> b && i = i' && aux ty ty' && aux bo bo' ) true fl fl' with Invalid_argument _ -> false) | C.CoFix (i,fl), C.CoFix (i',fl') -> i = i' && (try List.fold_left2 (fun b (_,ty,bo) (_,ty',bo') -> b && aux ty ty' && aux bo bo' ) true fl fl' with Invalid_argument _ -> false) | C.Meta (i, subst), C.Meta (i', subst') -> i = i' && (try List.fold_left2 (fun b xt xt' -> match xt,xt' with | Some t, Some t' -> b && aux t t' | _ -> b ) true subst subst' with Invalid_argument _ -> false) | C.Appl [t], t' | t, C.Appl [t'] -> assert false (* FG: are we _really_ sure of these? | C.Sort (C.Type u), C.Sort (C.Type u') -> u = u' | C.Implicit a, C.Implicit a' -> a = a' we insert an unused variable below to genarate a warning at compile time *) | _,_ -> false (* we already know that t != t' *) and aux_exp_named_subst exp_named_subst1 exp_named_subst2 = try List.fold_left2 (fun b (uri1,t1) (uri2,t2) -> b && UriManager.eq uri1 uri2 && aux t1 t2 ) true exp_named_subst1 exp_named_subst2 with Invalid_argument _ -> false in aux let is_sober t = let rec sober_term g = function | C.Rel _ | C.Sort _ | C.Implicit _ -> g | C.Const (_, xnss) | C.Var (_, xnss) | C.MutConstruct (_, _, _, xnss) | C.MutInd (_, _, xnss) -> sober_xnss g xnss | C.Meta (_, xss) -> sober_xss g xss | C.Lambda (_, v, t) | C.Prod (_, v, t) | C.Cast (t, v) -> sober_term (sober_term g t) v | C.LetIn (_, v, ty, t) -> sober_term (sober_term (sober_term g t) ty) v | C.Appl [] | C.Appl [_] -> fun b -> false | C.Appl ts -> sober_terms g ts | C.MutCase (_, _, t, v, ts) -> sober_terms (sober_term (sober_term g t) v) ts | C.Fix (_, ifs) -> sober_ifs g ifs | C.CoFix (_, cifs) -> sober_cifs g cifs and sober_terms g = List.fold_left sober_term g and sober_xnss g = let map g (_, t) = sober_term g t in List.fold_left map g and sober_xss g = let map g = function | None -> g | Some t -> sober_term g t in List.fold_left map g and sober_ifs g = let map g (_, _, t, v) = sober_term (sober_term g t) v in List.fold_left map g and sober_cifs g = let map g (_, t, v) = sober_term (sober_term g t) v in List.fold_left map g in sober_term (fun b -> b) t true