(* Copyright (C) 2000, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) (* $Id$ *) (* TODO factorize functions to frequent errors (e.g. "Unknwon mutual inductive * ...") *) open Printf exception AssertFailure of string Lazy.t;; exception TypeCheckerFailure of string Lazy.t;; let fdebug = ref 0;; let debug t context = let rec debug_aux t i = let module C = Cic in let module U = UriManager in CicPp.ppobj (C.Variable ("DEBUG", None, t, [], [])) ^ "\n" ^ i in if !fdebug = 0 then raise (TypeCheckerFailure (lazy (List.fold_right debug_aux (t::context) ""))) ;; let debug_print = fun _ -> ();; let rec split l n = match (l,n) with (l,0) -> ([], l) | (he::tl, n) -> let (l1,l2) = split tl (n-1) in (he::l1,l2) | (_,_) -> raise (TypeCheckerFailure (lazy "Parameters number < left parameters number")) ;; (* XXX: bug *) let ugraph_convertibility ug1 ug2 ul2 = true;; let check_and_clean_ugraph inferred_ugraph unchecked_ugraph uri obj = match unchecked_ugraph with | Some (ug,ul) -> if not (ugraph_convertibility inferred_ugraph ug ul) then raise (TypeCheckerFailure (lazy ("inferred univ graph not equal with declared ugraph"))) else ug,ul,obj | None -> CicUnivUtils.clean_and_fill uri obj inferred_ugraph ;; let debrujin_constructor ?(cb=fun _ _ -> ()) ?(check_exp_named_subst=true) uri number_of_types context = let rec aux k t = let module C = Cic in let res = match t with C.Rel n as t when n <= k -> t | C.Rel _ -> raise (TypeCheckerFailure (lazy "unbound variable found in constructor type")) | C.Var (uri,exp_named_subst) -> let exp_named_subst' = List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst in C.Var (uri,exp_named_subst') | C.Meta (i,l) -> let l' = List.map (function None -> None | Some t -> Some (aux k t)) l in C.Meta (i,l') | C.Sort _ | C.Implicit _ as t -> t | C.Cast (te,ty) -> C.Cast (aux k te, aux k ty) | C.Prod (n,s,t) -> C.Prod (n, aux k s, aux (k+1) t) | C.Lambda (n,s,t) -> C.Lambda (n, aux k s, aux (k+1) t) | C.LetIn (n,s,ty,t) -> C.LetIn (n, aux k s, aux k ty, aux (k+1) t) | C.Appl l -> C.Appl (List.map (aux k) l) | C.Const (uri,exp_named_subst) -> let exp_named_subst' = List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst in C.Const (uri,exp_named_subst') | C.MutInd (uri',tyno,exp_named_subst) when UriManager.eq uri uri' -> if check_exp_named_subst && exp_named_subst != [] then raise (TypeCheckerFailure (lazy ("non-empty explicit named substitution is applied to "^ "a mutual inductive type which is being defined"))) ; C.Rel (k + number_of_types - tyno) ; | C.MutInd (uri',tyno,exp_named_subst) -> let exp_named_subst' = List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst in C.MutInd (uri',tyno,exp_named_subst') | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> let exp_named_subst' = List.map (function (uri,t) -> (uri,aux k t)) exp_named_subst in C.MutConstruct (uri,tyno,consno,exp_named_subst') | C.MutCase (sp,i,outty,t,pl) -> C.MutCase (sp, i, aux k outty, aux k t, List.map (aux k) pl) | C.Fix (i, fl) -> let len = List.length fl in let liftedfl = List.map (fun (name, i, ty, bo) -> (name, i, aux k ty, aux (k+len) bo)) fl in C.Fix (i, liftedfl) | C.CoFix (i, fl) -> let len = List.length fl in let liftedfl = List.map (fun (name, ty, bo) -> (name, aux k ty, aux (k+len) bo)) fl in C.CoFix (i, liftedfl) in cb t res; res in aux (List.length context) ;; exception CicEnvironmentError;; let rec type_of_constant ~logger uri orig_ugraph = let module C = Cic in let module R = CicReduction in let module U = UriManager in let cobj,ugraph = match CicEnvironment.is_type_checked ~trust:true orig_ugraph uri with CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' | CicEnvironment.UncheckedObj (uobj,unchecked_ugraph) -> logger#log (`Start_type_checking uri) ; (* let's typecheck the uncooked obj *) let inferred_ugraph = match uobj with C.Constant (_,Some te,ty,_,_) -> let _,ugraph = type_of ~logger ty CicUniv.empty_ugraph in let type_of_te,ugraph = type_of ~logger te ugraph in let b,ugraph = R.are_convertible [] type_of_te ty ugraph in if not b then raise (TypeCheckerFailure (lazy (sprintf "the constant %s is not well typed because the type %s of the body is not convertible to the declared type %s" (U.string_of_uri uri) (CicPp.ppterm type_of_te) (CicPp.ppterm ty)))) else ugraph | C.Constant (_,None,ty,_,_) -> (* only to check that ty is well-typed *) let _,ugraph = type_of ~logger ty CicUniv.empty_ugraph in ugraph | C.CurrentProof (_,conjs,te,ty,_,_) -> let _,ugraph = List.fold_left (fun (metasenv,ugraph) ((_,context,ty) as conj) -> let _,ugraph = type_of_aux' ~logger metasenv context ty ugraph in (metasenv @ [conj],ugraph) ) ([],CicUniv.empty_ugraph) conjs in let _,ugraph = type_of_aux' ~logger conjs [] ty ugraph in let type_of_te,ugraph = type_of_aux' ~logger conjs [] te ugraph in let b,ugraph = R.are_convertible [] type_of_te ty ugraph in if not b then raise (TypeCheckerFailure (lazy (sprintf "the current proof %s is not well typed because the type %s of the body is not convertible to the declared type %s" (U.string_of_uri uri) (CicPp.ppterm type_of_te) (CicPp.ppterm ty)))) else ugraph | _ -> raise (TypeCheckerFailure (lazy ("Unknown constant:" ^ U.string_of_uri uri))) in let ugraph, ul, obj = check_and_clean_ugraph inferred_ugraph unchecked_ugraph uri uobj in CicEnvironment.set_type_checking_info uri (obj, ugraph, ul); logger#log (`Type_checking_completed uri) ; match CicEnvironment.is_type_checked ~trust:false orig_ugraph uri with CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError in match cobj,ugraph with (C.Constant (_,_,ty,_,_)),g -> ty,g | (C.CurrentProof (_,_,_,ty,_,_)),g -> ty,g | _ -> raise (TypeCheckerFailure (lazy ("Unknown constant:" ^ U.string_of_uri uri))) and type_of_variable ~logger uri orig_ugraph = let module C = Cic in let module R = CicReduction in let module U = UriManager in (* 0 because a variable is never cooked => no partial cooking at one level *) match CicEnvironment.is_type_checked ~trust:true orig_ugraph uri with | CicEnvironment.CheckedObj ((C.Variable (_,_,ty,_,_)),ugraph') -> ty,ugraph' | CicEnvironment.UncheckedObj (C.Variable (_,bo,ty,_,_) as uobj, unchecked_ugraph) -> logger#log (`Start_type_checking uri) ; (* only to check that ty is well-typed *) let _,ugraph = type_of ~logger ty CicUniv.empty_ugraph in let inferred_ugraph = match bo with None -> ugraph | Some bo -> let ty_bo,ugraph = type_of ~logger bo ugraph in let b,ugraph = R.are_convertible [] ty_bo ty ugraph in if not b then raise (TypeCheckerFailure (lazy ("Unknown variable:" ^ U.string_of_uri uri))) else ugraph in let ugraph, ul, obj = check_and_clean_ugraph inferred_ugraph unchecked_ugraph uri uobj in CicEnvironment.set_type_checking_info uri (obj, ugraph, ul); logger#log (`Type_checking_completed uri) ; (match CicEnvironment.is_type_checked ~trust:false orig_ugraph uri with CicEnvironment.CheckedObj((C.Variable(_,_,ty,_,_)),ugraph)->ty,ugraph | CicEnvironment.CheckedObj _ | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError) | _ -> raise (TypeCheckerFailure (lazy ("Unknown variable:" ^ U.string_of_uri uri))) and does_not_occur ?(subst=[]) context n nn te = let module C = Cic in match te with C.Rel m when m > n && m <= nn -> false | C.Rel m -> (try (match List.nth context (m-1) with Some (_,C.Def (bo,_)) -> does_not_occur ~subst context n nn (CicSubstitution.lift m bo) | _ -> true) with Failure _ -> assert false) | C.Sort _ | C.Implicit _ -> true | C.Meta (mno,l) -> List.fold_right (fun x i -> match x with None -> i | Some x -> i && does_not_occur ~subst context n nn x) l true && (try let (canonical_context,term,ty) = CicUtil.lookup_subst mno subst in does_not_occur ~subst context n nn (CicSubstitution.subst_meta l term) with CicUtil.Subst_not_found _ -> true) | C.Cast (te,ty) -> does_not_occur ~subst context n nn te && does_not_occur ~subst context n nn ty | C.Prod (name,so,dest) -> does_not_occur ~subst context n nn so && does_not_occur ~subst ((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) dest | C.Lambda (name,so,dest) -> does_not_occur ~subst context n nn so && does_not_occur ~subst ((Some (name,(C.Decl so)))::context) (n+1) (nn+1) dest | C.LetIn (name,so,ty,dest) -> does_not_occur ~subst context n nn so && does_not_occur ~subst context n nn ty && does_not_occur ~subst ((Some (name,(C.Def (so,ty))))::context) (n + 1) (nn + 1) dest | C.Appl l -> List.for_all (does_not_occur ~subst context n nn) l | C.Var (_,exp_named_subst) | C.Const (_,exp_named_subst) | C.MutInd (_,_,exp_named_subst) | C.MutConstruct (_,_,_,exp_named_subst) -> List.for_all (fun (_,x) -> does_not_occur ~subst context n nn x) exp_named_subst | C.MutCase (_,_,out,te,pl) -> does_not_occur ~subst context n nn out && does_not_occur ~subst context n nn te && List.for_all (does_not_occur ~subst context n nn) pl | C.Fix (_,fl) -> let len = List.length fl in let n_plus_len = n + len in let nn_plus_len = nn + len in let tys,_ = List.fold_left (fun (types,len) (n,_,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ) ([],0) fl in List.fold_right (fun (_,_,ty,bo) i -> i && does_not_occur ~subst context n nn ty && does_not_occur ~subst (tys @ context) n_plus_len nn_plus_len bo ) fl true | C.CoFix (_,fl) -> let len = List.length fl in let n_plus_len = n + len in let nn_plus_len = nn + len in let tys,_ = List.fold_left (fun (types,len) (n,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ) ([],0) fl in List.fold_right (fun (_,ty,bo) i -> i && does_not_occur ~subst context n nn ty && does_not_occur ~subst (tys @ context) n_plus_len nn_plus_len bo ) fl true (*CSC l'indice x dei tipi induttivi e' t.c. n < x <= nn *) (*CSC questa funzione e' simile alla are_all_occurrences_positive, ma fa *) (*CSC dei controlli leggermente diversi. Viene invocata solamente dalla *) (*CSC strictly_positive *) (*CSC definizione (giusta???) tratta dalla mail di Hugo ;-) *) and weakly_positive context n nn uri te = let module C = Cic in (*CSC: Che schifo! Bisogna capire meglio e trovare una soluzione ragionevole!*) let dummy_mutind = C.MutInd (HelmLibraryObjects.Datatypes.nat_URI,0,[]) in (*CSC: mettere in cicSubstitution *) let rec subst_inductive_type_with_dummy_mutind = function C.MutInd (uri',0,_) when UriManager.eq uri' uri -> dummy_mutind | C.Appl ((C.MutInd (uri',0,_))::tl) when UriManager.eq uri' uri -> dummy_mutind | C.Cast (te,ty) -> subst_inductive_type_with_dummy_mutind te | C.Prod (name,so,ta) -> C.Prod (name, subst_inductive_type_with_dummy_mutind so, subst_inductive_type_with_dummy_mutind ta) | C.Lambda (name,so,ta) -> C.Lambda (name, subst_inductive_type_with_dummy_mutind so, subst_inductive_type_with_dummy_mutind ta) | C.LetIn (name,so,ty,ta) -> C.LetIn (name, subst_inductive_type_with_dummy_mutind so, subst_inductive_type_with_dummy_mutind ty, subst_inductive_type_with_dummy_mutind ta) | C.Appl tl -> C.Appl (List.map subst_inductive_type_with_dummy_mutind tl) | C.MutCase (uri,i,outtype,term,pl) -> C.MutCase (uri,i, subst_inductive_type_with_dummy_mutind outtype, subst_inductive_type_with_dummy_mutind term, List.map subst_inductive_type_with_dummy_mutind pl) | C.Fix (i,fl) -> C.Fix (i,List.map (fun (name,i,ty,bo) -> (name,i, subst_inductive_type_with_dummy_mutind ty, subst_inductive_type_with_dummy_mutind bo)) fl) | C.CoFix (i,fl) -> C.CoFix (i,List.map (fun (name,ty,bo) -> (name, subst_inductive_type_with_dummy_mutind ty, subst_inductive_type_with_dummy_mutind bo)) fl) | C.Const (uri,exp_named_subst) -> let exp_named_subst' = List.map (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) exp_named_subst in C.Const (uri,exp_named_subst') | C.Var (uri,exp_named_subst) -> let exp_named_subst' = List.map (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) exp_named_subst in C.Var (uri,exp_named_subst') | C.MutInd (uri,typeno,exp_named_subst) -> let exp_named_subst' = List.map (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) exp_named_subst in C.MutInd (uri,typeno,exp_named_subst') | C.MutConstruct (uri,typeno,consno,exp_named_subst) -> let exp_named_subst' = List.map (function (uri,t) -> (uri,subst_inductive_type_with_dummy_mutind t)) exp_named_subst in C.MutConstruct (uri,typeno,consno,exp_named_subst') | t -> t in match CicReduction.whd context te with (* C.Appl ((C.MutInd (uri',0,_))::tl) when UriManager.eq uri' uri -> true *) C.Appl ((C.MutInd (uri',_,_))::tl) when UriManager.eq uri' uri -> true | C.MutInd (uri',0,_) when UriManager.eq uri' uri -> true | C.Prod (name,source,dest) when does_not_occur ((Some (name,(C.Decl source)))::context) 0 1 dest -> (* dummy abstraction, so we behave as in the anonimous case *) strictly_positive context n nn (subst_inductive_type_with_dummy_mutind source) && weakly_positive ((Some (name,(C.Decl source)))::context) (n + 1) (nn + 1) uri dest | C.Prod (name,source,dest) -> does_not_occur context n nn (subst_inductive_type_with_dummy_mutind source)&& weakly_positive ((Some (name,(C.Decl source)))::context) (n + 1) (nn + 1) uri dest | _ -> raise (TypeCheckerFailure (lazy "Malformed inductive constructor type")) (* instantiate_parameters ps (x1:T1)...(xn:Tn)C *) (* returns ((x_|ps|:T_|ps|)...(xn:Tn)C){ps_1 / x1 ; ... ; ps_|ps| / x_|ps|} *) and instantiate_parameters params c = let module C = Cic in match (c,params) with (c,[]) -> c | (C.Prod (_,_,ta), he::tl) -> instantiate_parameters tl (CicSubstitution.subst he ta) | (C.Cast (te,_), _) -> instantiate_parameters params te | (t,l) -> raise (AssertFailure (lazy "1")) and strictly_positive context n nn te = let module C = Cic in let module U = UriManager in match CicReduction.whd context te with | t when does_not_occur context n nn t -> true | C.Rel _ -> true | C.Cast (te,ty) -> (*CSC: bisogna controllare ty????*) strictly_positive context n nn te | C.Prod (name,so,ta) -> does_not_occur context n nn so && strictly_positive ((Some (name,(C.Decl so)))::context) (n+1) (nn+1) ta | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true | C.Appl ((C.MutInd (uri,i,exp_named_subst))::_) | (C.MutInd (uri,i,exp_named_subst)) as t -> let tl = match t with C.Appl (_::tl) -> tl | _ -> [] in let (ok,paramsno,ity,cl,name) = let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in match o with C.InductiveDefinition (tl,_,paramsno,_) -> let (name,_,ity,cl) = List.nth tl i in (List.length tl = 1, paramsno, ity, cl, name) (* (true, paramsno, ity, cl, name) *) | _ -> raise (TypeCheckerFailure (lazy ("Unknown inductive type:" ^ U.string_of_uri uri))) in let (params,arguments) = split tl paramsno in let lifted_params = List.map (CicSubstitution.lift 1) params in let cl' = List.map (fun (_,te) -> instantiate_parameters lifted_params (CicSubstitution.subst_vars exp_named_subst te) ) cl in ok && List.fold_right (fun x i -> i && does_not_occur context n nn x) arguments true && List.fold_right (fun x i -> i && weakly_positive ((Some (C.Name name,(Cic.Decl ity)))::context) (n+1) (nn+1) uri x ) cl' true | t -> false (* the inductive type indexes are s.t. n < x <= nn *) and are_all_occurrences_positive context uri indparamsno i n nn te = let module C = Cic in match CicReduction.whd context te with C.Appl ((C.Rel m)::tl) when m = i -> (*CSC: riscrivere fermandosi a 0 *) (* let's check if the inductive type is applied at least to *) (* indparamsno parameters *) let last = List.fold_left (fun k x -> if k = 0 then 0 else match CicReduction.whd context x with C.Rel m when m = n - (indparamsno - k) -> k - 1 | _ -> raise (TypeCheckerFailure (lazy ("Non-positive occurence in mutual inductive definition(s) [1]" ^ UriManager.string_of_uri uri))) ) indparamsno tl in if last = 0 then List.fold_right (fun x i -> i && does_not_occur context n nn x) tl true else raise (TypeCheckerFailure (lazy ("Non-positive occurence in mutual inductive definition(s) [2]"^ UriManager.string_of_uri uri))) | C.Rel m when m = i -> if indparamsno = 0 then true else raise (TypeCheckerFailure (lazy ("Non-positive occurence in mutual inductive definition(s) [3]"^ UriManager.string_of_uri uri))) | C.Prod (name,source,dest) when does_not_occur ((Some (name,(C.Decl source)))::context) 0 1 dest -> (* dummy abstraction, so we behave as in the anonimous case *) strictly_positive context n nn source && are_all_occurrences_positive ((Some (name,(C.Decl source)))::context) uri indparamsno (i+1) (n + 1) (nn + 1) dest | C.Prod (name,source,dest) -> does_not_occur context n nn source && are_all_occurrences_positive ((Some (name,(C.Decl source)))::context) uri indparamsno (i+1) (n + 1) (nn + 1) dest | _ -> raise (TypeCheckerFailure (lazy ("Malformed inductive constructor type " ^ (UriManager.string_of_uri uri)))) (* Main function to checks the correctness of a mutual *) (* inductive block definition. This is the function *) (* exported to the proof-engine. *) and typecheck_mutual_inductive_defs ~logger uri (itl,_,indparamsno) ugraph = let module U = UriManager in (* let's check if the arity of the inductive types are well *) (* formed *) let ugrap1 = List.fold_left (fun ugraph (_,_,x,_) -> let _,ugraph' = type_of ~logger x ugraph in ugraph') ugraph itl in (* let's check if the types of the inductive constructors *) (* are well formed. *) (* In order not to use type_of_aux we put the types of the *) (* mutual inductive types at the head of the types of the *) (* constructors using Prods *) let len = List.length itl in let tys = List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) itl in let _,ugraph2 = List.fold_right (fun (_,_,_,cl) (i,ugraph) -> let ugraph'' = List.fold_left (fun ugraph (name,te) -> let debrujinedte = debrujin_constructor uri len [] te in let augmented_term = List.fold_right (fun (name,_,ty,_) i -> Cic.Prod (Cic.Name name, ty, i)) itl debrujinedte in let _,ugraph' = type_of ~logger augmented_term ugraph in (* let's check also the positivity conditions *) if not (are_all_occurrences_positive tys uri indparamsno i 0 len debrujinedte) then begin prerr_endline (UriManager.string_of_uri uri); prerr_endline (string_of_int (List.length tys)); raise (TypeCheckerFailure (lazy ("Non positive occurence in " ^ U.string_of_uri uri))) end else ugraph' ) ugraph cl in (i + 1),ugraph'' ) itl (1,ugrap1) in ugraph2 (* Main function to checks the correctness of a mutual *) (* inductive block definition. *) and check_mutual_inductive_defs uri obj ugraph = match obj with Cic.InductiveDefinition (itl, params, indparamsno, _) -> typecheck_mutual_inductive_defs uri (itl,params,indparamsno) ugraph | _ -> raise (TypeCheckerFailure ( lazy ("Unknown mutual inductive definition:" ^ UriManager.string_of_uri uri))) and type_of_mutual_inductive_defs ~logger uri i orig_ugraph = let module C = Cic in let module R = CicReduction in let module U = UriManager in let cobj,ugraph1 = match CicEnvironment.is_type_checked ~trust:true orig_ugraph uri with CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' | CicEnvironment.UncheckedObj (uobj,unchecked_ugraph) -> logger#log (`Start_type_checking uri) ; let inferred_ugraph = check_mutual_inductive_defs ~logger uri uobj CicUniv.empty_ugraph in let ugraph, ul, obj = check_and_clean_ugraph inferred_ugraph unchecked_ugraph uri uobj in CicEnvironment.set_type_checking_info uri (obj,ugraph,ul); logger#log (`Type_checking_completed uri) ; (match CicEnvironment.is_type_checked ~trust:false orig_ugraph uri with CicEnvironment.CheckedObj (cobj,ugraph') -> (cobj,ugraph') | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError ) in match cobj with | C.InductiveDefinition (dl,_,_,_) -> let (_,_,arity,_) = List.nth dl i in arity,ugraph1 | _ -> raise (TypeCheckerFailure (lazy ("Unknown mutual inductive definition:" ^ U.string_of_uri uri))) and type_of_mutual_inductive_constr ~logger uri i j orig_ugraph = let module C = Cic in let module R = CicReduction in let module U = UriManager in let cobj,ugraph1 = match CicEnvironment.is_type_checked ~trust:true orig_ugraph uri with CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' | CicEnvironment.UncheckedObj (uobj,unchecked_ugraph) -> logger#log (`Start_type_checking uri) ; let inferred_ugraph = check_mutual_inductive_defs ~logger uri uobj CicUniv.empty_ugraph in let ugraph, ul, obj = check_and_clean_ugraph inferred_ugraph unchecked_ugraph uri uobj in CicEnvironment.set_type_checking_info uri (obj, ugraph, ul); logger#log (`Type_checking_completed uri) ; (match CicEnvironment.is_type_checked ~trust:false orig_ugraph uri with CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' | CicEnvironment.UncheckedObj _ -> raise CicEnvironmentError) in match cobj with C.InductiveDefinition (dl,_,_,_) -> let (_,_,_,cl) = List.nth dl i in let (_,ty) = List.nth cl (j-1) in ty,ugraph1 | _ -> raise (TypeCheckerFailure (lazy ("Unknown mutual inductive definition:" ^ UriManager.string_of_uri uri))) and recursive_args context n nn te = let module C = Cic in match CicReduction.whd context te with C.Rel _ | C.MutInd _ -> [] | C.Var _ | C.Meta _ | C.Sort _ | C.Implicit _ | C.Cast _ (*CSC ??? *) -> raise (AssertFailure (lazy "3")) (* due to type-checking *) | C.Prod (name,so,de) -> (not (does_not_occur context n nn so)) :: (recursive_args ((Some (name,(C.Decl so)))::context) (n+1) (nn + 1) de) | C.Lambda _ | C.LetIn _ -> raise (AssertFailure (lazy "4")) (* due to type-checking *) | C.Appl _ -> [] | C.Const _ -> raise (AssertFailure (lazy "5")) | C.MutConstruct _ | C.MutCase _ | C.Fix _ | C.CoFix _ -> raise (AssertFailure (lazy "6")) (* due to type-checking *) and get_new_safes ~subst context p rl safes n nn x = let module C = Cic in let module U = UriManager in let module R = CicReduction in match R.whd ~subst context p, rl with | C.Lambda (name,so,ta), b::tl -> let safes = List.map (fun x -> x + 1) safes in let safes = if b then 1::safes else safes in get_new_safes ~subst ((Some (name,(C.Decl so)))::context) ta tl safes (n+1) (nn+1) (x+1) | C.MutConstruct _ as e, _ | (C.Rel _ as e), _ | e, [] -> (e,safes,n,nn,x,context) | p,_::_ -> raise (AssertFailure (lazy (Printf.sprintf "Get New Safes: p=%s" (CicPp.ppterm p)))) and split_prods ~subst context n te = let module C = Cic in let module R = CicReduction in match (n, R.whd ~subst context te) with (0, _) -> context,te | (n, C.Prod (name,so,ta)) when n > 0 -> split_prods ~subst ((Some (name,(C.Decl so)))::context) (n - 1) ta | (_, _) -> raise (AssertFailure (lazy "8")) and eat_lambdas ~subst context n te = let module C = Cic in let module R = CicReduction in match (n, R.whd ~subst context te) with (0, _) -> (te, 0, context) | (n, C.Lambda (name,so,ta)) when n > 0 -> let (te, k, context') = eat_lambdas ~subst ((Some (name,(C.Decl so)))::context) (n - 1) ta in (te, k + 1, context') | (n, te) -> raise (AssertFailure (lazy (sprintf "9 (%d, %s)" n (CicPp.ppterm te)))) and specialize_inductive_type ~logger ~subst ~metasenv context t = let ty,_= type_of_aux' ~logger ~subst metasenv context t CicUniv.oblivion_ugraph in match CicReduction.whd ~subst context ty with | Cic.MutInd (uri,_,exp) | Cic.Appl (Cic.MutInd (uri,_,exp) :: _) as ty -> let args = match ty with Cic.Appl (_::tl) -> tl | _ -> [] in let o,_ = CicEnvironment.get_obj CicUniv.oblivion_ugraph uri in (match o with | Cic.InductiveDefinition (tl,_,paramsno,_) -> let left_args,_ = HExtlib.split_nth paramsno args in List.map (fun (name, isind, arity, cl) -> let arity = CicSubstitution.subst_vars exp arity in let arity = instantiate_parameters left_args arity in let cl = List.map (fun (id,ty) -> let ty = CicSubstitution.subst_vars exp ty in id, instantiate_parameters left_args ty) cl in name, isind, arity, cl) tl, paramsno | _ -> assert false) | _ -> assert false and check_is_really_smaller_arg ~logger ~metasenv ~subst rec_uri rec_uri_len context n nn kl x safes te = let module C = Cic in let module U = UriManager in (*CSC: we could perform beta-iota(-zeta?) immediately, and delta only on-demand when it fails without *) match CicReduction.whd ~subst context te with C.Rel m when List.mem m safes -> true | C.Rel _ | C.MutConstruct _ | C.Const _ | C.Var _ -> false | C.Appl (he::_) -> check_is_really_smaller_arg rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes he | C.Lambda (name,ty,ta) -> check_is_really_smaller_arg rec_uri rec_uri_len ~logger ~metasenv ~subst (Some (name,Cic.Decl ty)::context) (n+1) (nn+1) kl (x+1) (List.map (fun n -> n+1) safes) ta | C.MutCase (uri,i,outtype,term,pl) -> (match term with | C.Rel m | C.Appl ((C.Rel m)::_) when List.mem m safes || m = x -> let tys,_ = specialize_inductive_type ~logger ~subst ~metasenv context term in let tys_ctx,_ = List.fold_left (fun (types,len) (n,_,ty,_) -> Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ([],0) tys in let _,isinductive,_,cl = List.nth tys i in if not isinductive then List.for_all (check_is_really_smaller_arg rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes) pl else List.for_all2 (fun p (_,c) -> let rec_params = let c = debrujin_constructor ~check_exp_named_subst:false rec_uri rec_uri_len context c in let len_ctx = List.length context in recursive_args (context@tys_ctx) len_ctx (len_ctx+rec_uri_len) c in let (e, safes',n',nn',x',context') = get_new_safes ~subst context p rec_params safes n nn x in check_is_really_smaller_arg rec_uri rec_uri_len ~logger ~metasenv ~subst context' n' nn' kl x' safes' e ) pl cl | _ -> List.for_all (check_is_really_smaller_arg rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes) pl ) | C.Fix (_, fl) -> let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len and x_plus_len = x + len and tys,_ = List.fold_left (fun (types,len) (n,_,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ) ([],0) fl and safes' = List.map (fun x -> x + len) safes in List.for_all (fun (_,_,_,bo) -> check_is_really_smaller_arg rec_uri rec_uri_len ~logger ~metasenv ~subst (tys@context) n_plus_len nn_plus_len kl x_plus_len safes' bo ) fl | t -> raise (AssertFailure (lazy ("An inhabitant of an inductive type in normal form cannot have this shape: " ^ CicPp.ppterm t))) and guarded_by_destructors ~logger ~metasenv ~subst rec_uri rec_uri_len context n nn kl x safes t = let module C = Cic in let module U = UriManager in let t = CicReduction.whd ~delta:false ~subst context t in let res = match t with C.Rel m when m > n && m <= nn -> false | C.Rel m -> (match List.nth context (m-1) with Some (_,C.Decl _) -> true | Some (_,C.Def (bo,_)) -> guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes (CicSubstitution.lift m bo) | None -> raise (TypeCheckerFailure (lazy "Reference to deleted hypothesis")) ) | C.Meta _ | C.Sort _ | C.Implicit _ -> true | C.Cast (te,ty) -> guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes te && guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes ty | C.Prod (name,so,ta) -> guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes so && guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst ((Some (name,(C.Decl so)))::context) (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.Lambda (name,so,ta) -> guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes so && guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst ((Some (name,(C.Decl so)))::context) (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.LetIn (name,so,ty,ta) -> guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes so && guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes ty && guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst ((Some (name,(C.Def (so,ty))))::context) (n+1) (nn+1) kl (x+1) (List.map (fun x -> x + 1) safes) ta | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> let k = List.nth kl (m - n - 1) in if not (List.length tl > k) then false else List.for_all (guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes) tl && check_is_really_smaller_arg rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes (List.nth tl k) | C.Var (_,exp_named_subst) | C.Const (_,exp_named_subst) | C.MutInd (_,_,exp_named_subst) | C.MutConstruct (_,_,_,exp_named_subst) -> List.for_all (fun (_,t) -> guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes t) exp_named_subst | C.MutCase (uri,i,outtype,term,pl) -> (match CicReduction.whd ~subst context term with | C.Rel m | C.Appl ((C.Rel m)::_) as t when List.mem m safes || m = x -> let tl = match t with C.Appl (_::tl) -> tl | _ -> [] in List.for_all (guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes) tl && let tys,_ = specialize_inductive_type ~logger ~subst ~metasenv context t in let tys_ctx,_ = List.fold_left (fun (types,len) (n,_,ty,_) -> Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ([],0) tys in let _,isinductive,_,cl = List.nth tys i in if not isinductive then guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes outtype && guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes term && List.for_all (guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes) pl else guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes outtype && List.for_all2 (fun p (_,c) -> let rec_params = let c = debrujin_constructor ~check_exp_named_subst:false rec_uri rec_uri_len context c in let len_ctx = List.length context in recursive_args (context@tys_ctx) len_ctx (len_ctx+rec_uri_len) c in let (e, safes',n',nn',x',context') = get_new_safes ~subst context p rec_params safes n nn x in guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context' n' nn' kl x' safes' e ) pl cl | _ -> guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes outtype && guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes term && (*CSC: manca ??? il controllo sul tipo di term? *) List.fold_right (fun p i -> i && guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes p) pl true ) | C.Appl (C.Fix (fixno, fl)::_) | C.Fix (fixno,fl) as t-> let l = match t with C.Appl (_::tl) -> tl | _ -> [] in let len = List.length fl in let n_plus_len = n + len in let nn_plus_len = nn + len in let x_plus_len = x + len in let tys,_ = List.fold_left (fun (types,len) (n,_,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ) ([],0) fl in let safes' = List.map (fun x -> x + len) safes in List.for_all (guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes) l && snd (List.fold_left (fun (fixno',i) (_,recno,ty,bo) -> fixno'+1, i && guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x_plus_len safes' ty && if fixno' = fixno && List.length l > recno && (*case where the recursive argument is already really_smaller *) check_is_really_smaller_arg rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes (List.nth l recno) then let bo_without_lambdas,_,context = eat_lambdas ~subst (tys@context) (recno+1) bo in (* we assume the formal argument to be safe *) guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context (n_plus_len+recno+1) (nn_plus_len+recno+1) kl (x_plus_len+recno+1) (1::List.map (fun x -> x+recno+1) safes') bo_without_lambdas else guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst (tys@context) n_plus_len nn_plus_len kl x_plus_len safes' bo ) (0,true) fl) | C.CoFix (_, fl) -> let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len and x_plus_len = x + len and tys,_ = List.fold_left (fun (types,len) (n,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ) ([],0) fl and safes' = List.map (fun x -> x + len) safes in List.fold_right (fun (_,ty,bo) i -> i && guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x_plus_len safes' ty && guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst (tys@context) n_plus_len nn_plus_len kl x_plus_len safes' bo ) fl true | C.Appl tl -> List.fold_right (fun t i -> i && guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes t) tl true in if res then res else let t' = CicReduction.whd ~subst context t in if t = t' then false else guarded_by_destructors rec_uri rec_uri_len ~logger ~metasenv ~subst context n nn kl x safes t' (* the boolean h means already protected *) (* args is the list of arguments the type of the constructor that may be *) (* found in head position must be applied to. *) and guarded_by_constructors ~logger ~subst ~metasenv indURI = let module C = Cic in let rec aux context n nn h te = match CicReduction.whd ~subst context te with | C.Rel m when m > n && m <= nn -> h | C.Rel _ | C.Meta _ -> true | C.Sort _ | C.Implicit _ | C.Cast _ | C.Prod _ | C.MutInd _ | C.LetIn _ -> raise (AssertFailure (lazy "17")) | C.Lambda (name,so,de) -> does_not_occur ~subst context n nn so && aux ((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) h de | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> h && List.for_all (does_not_occur ~subst context n nn) tl | C.MutConstruct (_,_,_,exp_named_subst) -> List.for_all (fun (_,x) -> does_not_occur ~subst context n nn x) exp_named_subst | C.Appl ((C.MutConstruct (uri,i,j,exp_named_subst))::tl) as t -> List.for_all (fun (_,x) -> does_not_occur ~subst context n nn x) exp_named_subst && let consty, len_tys, tys_ctx, paramsno = let tys, paramsno = specialize_inductive_type ~logger ~subst ~metasenv context t in let _,_,_,cl = List.nth tys i in let _,ty = List.nth cl (j-1) in ty, List.length tys, fst(List.fold_left (fun (types,len) (n,_,ty,_) -> Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ([],0) tys), paramsno in let rec_params = let c = debrujin_constructor ~check_exp_named_subst:false indURI len_tys context consty in let len_ctx = List.length context in recursive_args (context@tys_ctx) len_ctx (len_ctx+len_tys) c in let rec analyse_instantiated_type rec_spec args = match rec_spec, args with | h::rec_spec, he::args -> aux context n nn h he && analyse_instantiated_type rec_spec args | _,[] -> true | _ -> raise (AssertFailure (lazy ("Too many args for constructor: " ^ String.concat " " (List.map (fun x-> CicPp.ppterm x) args)))) in let left, args = HExtlib.split_nth paramsno tl in List.for_all (does_not_occur ~subst context n nn) left && analyse_instantiated_type rec_params args | C.Appl ((C.MutCase (_,_,out,te,pl))::_) | C.MutCase (_,_,out,te,pl) as t -> let tl = match t with C.Appl (_::tl) -> tl | _ -> [] in List.for_all (does_not_occur ~subst context n nn) tl && does_not_occur ~subst context n nn out && does_not_occur ~subst context n nn te && List.for_all (aux context n nn h ) pl | C.Fix (_,fl) | C.Appl (C.Fix (_,fl)::_) as t -> let tl = match t with C.Appl (_::tl) -> tl | _ -> [] in let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len and tys,_ = List.fold_left (fun (types,len) (n,_,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ) ([],0) fl in List.for_all (does_not_occur ~subst context n nn) tl && List.for_all (fun (_,_,ty,bo) -> does_not_occur ~subst context n nn ty && aux (tys@context) n_plus_len nn_plus_len h bo) fl | C.Appl ((C.CoFix (_,fl))::_) | C.CoFix (_,fl) as t -> let tl = match t with C.Appl (_::tl) -> tl | _ -> [] in let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len and tys,_ = List.fold_left (fun (types,len) (n,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ) ([],0) fl in List.for_all (does_not_occur ~subst context n nn) tl && List.for_all (fun (_,ty,bo) -> does_not_occur ~subst context n nn ty && aux (tys@context) n_plus_len nn_plus_len h bo) fl | C.Var _ | C.Const _ | C.Appl _ as t -> does_not_occur ~subst context n nn t in aux and check_allowed_sort_elimination ~subst ~metasenv ~logger context uri i need_dummy ind arity1 arity2 ugraph = let module C = Cic in let module U = UriManager in let arity1 = CicReduction.whd ~subst context arity1 in let rec check_allowed_sort_elimination_aux ugraph context arity2 need_dummy = match arity1, CicReduction.whd ~subst context arity2 with (C.Prod (name,so1,de1), C.Prod (_,so2,de2)) -> let b,ugraph1 = CicReduction.are_convertible ~subst ~metasenv context so1 so2 ugraph in if b then check_allowed_sort_elimination ~subst ~metasenv ~logger ((Some (name,C.Decl so1))::context) uri i need_dummy (C.Appl [CicSubstitution.lift 1 ind ; C.Rel 1]) de1 de2 ugraph1 else false,ugraph1 | (C.Sort _, C.Prod (name,so,ta)) when not need_dummy -> let b,ugraph1 = CicReduction.are_convertible ~subst ~metasenv context so ind ugraph in if not b then false,ugraph1 else check_allowed_sort_elimination_aux ugraph1 ((Some (name,C.Decl so))::context) ta true | (C.Sort C.Prop, C.Sort C.Prop) when need_dummy -> true,ugraph | (C.Sort C.Prop, C.Sort C.Set) | (C.Sort C.Prop, C.Sort C.CProp) | (C.Sort C.Prop, C.Sort (C.Type _) ) when need_dummy -> (let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in match o with C.InductiveDefinition (itl,_,paramsno,_) -> let itl_len = List.length itl in let (name,_,ty,cl) = List.nth itl i in let cl_len = List.length cl in if (cl_len = 0 || (itl_len = 1 && cl_len = 1)) then let non_informative,ugraph = if cl_len = 0 then true,ugraph else is_non_informative ~logger [Some (C.Name name,C.Decl ty)] paramsno (snd (List.nth cl 0)) ugraph in (* is it a singleton or empty non recursive and non informative definition? *) non_informative, ugraph else false,ugraph | _ -> raise (TypeCheckerFailure (lazy ("Unknown mutual inductive definition:" ^ UriManager.string_of_uri uri))) ) | (C.Sort C.Set, C.Sort C.Prop) when need_dummy -> true , ugraph | (C.Sort C.CProp, C.Sort C.Prop) when need_dummy -> true , ugraph | (C.Sort C.Set, C.Sort C.Set) when need_dummy -> true , ugraph | (C.Sort C.Set, C.Sort C.CProp) when need_dummy -> true , ugraph | (C.Sort C.CProp, C.Sort C.Set) when need_dummy -> true , ugraph | (C.Sort C.CProp, C.Sort C.CProp) when need_dummy -> true , ugraph | ((C.Sort C.Set, C.Sort (C.Type _)) | (C.Sort C.CProp, C.Sort (C.Type _))) when need_dummy -> (let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in match o with C.InductiveDefinition (itl,_,paramsno,_) -> let tys = List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) itl in let (_,_,_,cl) = List.nth itl i in (List.fold_right (fun (_,x) (i,ugraph) -> if i then is_small ~logger tys paramsno x ugraph else false,ugraph ) cl (true,ugraph)) | _ -> raise (TypeCheckerFailure (lazy ("Unknown mutual inductive definition:" ^ UriManager.string_of_uri uri))) ) | (C.Sort (C.Type _), C.Sort _) when need_dummy -> true , ugraph | (_,_) -> false,ugraph in check_allowed_sort_elimination_aux ugraph context arity2 need_dummy and type_of_branch ~subst context argsno need_dummy outtype term constype = let module C = Cic in let module R = CicReduction in match R.whd ~subst context constype with C.MutInd (_,_,_) -> if need_dummy then outtype else C.Appl [outtype ; term] | C.Appl (C.MutInd (_,_,_)::tl) -> let (_,arguments) = split tl argsno in if need_dummy && arguments = [] then outtype else C.Appl (outtype::arguments@(if need_dummy then [] else [term])) | C.Prod (name,so,de) -> let term' = match CicSubstitution.lift 1 term with C.Appl l -> C.Appl (l@[C.Rel 1]) | t -> C.Appl [t ; C.Rel 1] in C.Prod (name,so,type_of_branch ~subst ((Some (name,(C.Decl so)))::context) argsno need_dummy (CicSubstitution.lift 1 outtype) term' de) | _ -> raise (AssertFailure (lazy "20")) (* check_metasenv_consistency checks that the "canonical" context of a metavariable is consitent - up to relocation via the relocation list l - with the actual context *) and check_metasenv_consistency ~logger ~subst metasenv context canonical_context l ugraph = let module C = Cic in let module R = CicReduction in let module S = CicSubstitution in let lifted_canonical_context = let rec aux i = function [] -> [] | (Some (n,C.Decl t))::tl -> (Some (n,C.Decl (S.subst_meta l (S.lift i t))))::(aux (i+1) tl) | None::tl -> None::(aux (i+1) tl) | (Some (n,C.Def (t,ty)))::tl -> (Some (n,C.Def ((S.subst_meta l (S.lift i t)),S.subst_meta l (S.lift i ty))))::(aux (i+1) tl) in aux 1 canonical_context in List.fold_left2 (fun ugraph t ct -> match (t,ct) with | _,None -> ugraph | Some t,Some (_,C.Def (ct,_)) -> (*CSC: the following optimization is to avoid a possibly expensive reduction that can be easily avoided and that is quite frequent. However, this is better handled using levels to control reduction *) let optimized_t = match t with Cic.Rel n -> (try match List.nth context (n - 1) with Some (_,C.Def (te,_)) -> S.lift n te | _ -> t with Failure _ -> t) | _ -> t in (*if t <> optimized_t && optimized_t = ct then prerr_endline "!!!!!!!!!!!!!!!" else if t <> optimized_t then prerr_endline ("@@ " ^ CicPp.ppterm t ^ " ==> " ^ CicPp.ppterm optimized_t ^ " <==> " ^ CicPp.ppterm ct);*) let b,ugraph1 = R.are_convertible ~subst ~metasenv context optimized_t ct ugraph in if not b then raise (TypeCheckerFailure (lazy (sprintf "Not well typed metavariable local context: expected a term convertible with %s, found %s" (CicPp.ppterm ct) (CicPp.ppterm t)))) else ugraph1 | Some t,Some (_,C.Decl ct) -> let type_t,ugraph1 = type_of_aux' ~logger ~subst metasenv context t ugraph in let b,ugraph2 = R.are_convertible ~subst ~metasenv context type_t ct ugraph1 in if not b then raise (TypeCheckerFailure (lazy (sprintf "Not well typed metavariable local context: expected a term of type %s, found %s of type %s" (CicPp.ppterm ct) (CicPp.ppterm t) (CicPp.ppterm type_t)))) else ugraph2 | None, _ -> raise (TypeCheckerFailure (lazy ("Not well typed metavariable local context: "^ "an hypothesis, that is not hidden, is not instantiated"))) ) ugraph l lifted_canonical_context (* type_of_aux' is just another name (with a different scope) for type_of_aux *) and type_of_aux' ~logger ?(subst = []) metasenv context t ugraph = let rec type_of_aux ~logger context t ugraph = let module C = Cic in let module R = CicReduction in let module S = CicSubstitution in let module U = UriManager in match t with C.Rel n -> (try match List.nth context (n - 1) with Some (_,C.Decl t) -> S.lift n t,ugraph | Some (_,C.Def (_,ty)) -> S.lift n ty,ugraph | None -> raise (TypeCheckerFailure (lazy "Reference to deleted hypothesis")) with Failure _ -> raise (TypeCheckerFailure (lazy "unbound variable")) ) | C.Var (uri,exp_named_subst) -> incr fdebug ; let ugraph1 = check_exp_named_subst ~logger ~subst context exp_named_subst ugraph in let ty,ugraph2 = type_of_variable ~logger uri ugraph1 in let ty1 = CicSubstitution.subst_vars exp_named_subst ty in decr fdebug ; ty1,ugraph2 | C.Meta (n,l) -> (try let (canonical_context,term,ty) = CicUtil.lookup_subst n subst in let ugraph1 = check_metasenv_consistency ~logger ~subst metasenv context canonical_context l ugraph in (* assuming subst is well typed !!!!! *) ((CicSubstitution.subst_meta l ty), ugraph1) (* type_of_aux context (CicSubstitution.subst_meta l term) *) with CicUtil.Subst_not_found _ -> let (_,canonical_context,ty) = CicUtil.lookup_meta n metasenv in let ugraph1 = check_metasenv_consistency ~logger ~subst metasenv context canonical_context l ugraph in ((CicSubstitution.subst_meta l ty),ugraph1)) (* TASSI: CONSTRAINTS *) | C.Sort (C.Type t) -> let t' = CicUniv.fresh() in (try let ugraph1 = CicUniv.add_gt t' t ugraph in (C.Sort (C.Type t')),ugraph1 with CicUniv.UniverseInconsistency msg -> raise (TypeCheckerFailure msg)) | C.Sort s -> (C.Sort (C.Type (CicUniv.fresh ()))),ugraph | C.Implicit _ -> raise (AssertFailure (lazy "Implicit found")) | C.Cast (te,ty) as t -> let _,ugraph1 = type_of_aux ~logger context ty ugraph in let ty_te,ugraph2 = type_of_aux ~logger context te ugraph1 in let b,ugraph3 = R.are_convertible ~subst ~metasenv context ty_te ty ugraph2 in if b then ty,ugraph3 else raise (TypeCheckerFailure (lazy (sprintf "Invalid cast %s" (CicPp.ppterm t)))) | C.Prod (name,s,t) -> let sort1,ugraph1 = type_of_aux ~logger context s ugraph in let sort2,ugraph2 = type_of_aux ~logger ((Some (name,(C.Decl s)))::context) t ugraph1 in sort_of_prod ~subst context (name,s) (sort1,sort2) ugraph2 | C.Lambda (n,s,t) -> let sort1,ugraph1 = type_of_aux ~logger context s ugraph in (match R.whd ~subst context sort1 with C.Meta _ | C.Sort _ -> () | _ -> raise (TypeCheckerFailure (lazy (sprintf "Not well-typed lambda-abstraction: the source %s should be a type; instead it is a term of type %s" (CicPp.ppterm s) (CicPp.ppterm sort1)))) ) ; let type2,ugraph2 = type_of_aux ~logger ((Some (n,(C.Decl s)))::context) t ugraph1 in (C.Prod (n,s,type2)),ugraph2 | C.LetIn (n,s,ty,t) -> (* only to check if s is well-typed *) let ty',ugraph1 = type_of_aux ~logger context s ugraph in let _,ugraph1 = type_of_aux ~logger context ty ugraph1 in let b,ugraph1 = R.are_convertible ~subst ~metasenv context ty ty' ugraph1 in if not b then raise (TypeCheckerFailure (lazy (sprintf "The type of %s is %s but it is expected to be %s" (CicPp.ppterm s) (CicPp.ppterm ty') (CicPp.ppterm ty)))) else (* The type of a LetIn is a LetIn. Extremely slow since the computed LetIn is later reduced and maybe also re-checked. (C.LetIn (n,s, type_of_aux ((Some (n,(C.Def s)))::context) t)) *) (* The type of the LetIn is reduced. Much faster than the previous solution. Moreover the inferred type is probably very different from the expected one. (CicReduction.whd ~subst context (C.LetIn (n,s, type_of_aux ((Some (n,(C.Def s)))::context) t))) *) (* One-step LetIn reduction. Even faster than the previous solution. Moreover the inferred type is closer to the expected one. *) let ty1,ugraph2 = type_of_aux ~logger ((Some (n,(C.Def (s,ty))))::context) t ugraph1 in (CicSubstitution.subst ~avoid_beta_redexes:true s ty1),ugraph2 | C.Appl (he::tl) when List.length tl > 0 -> let hetype,ugraph1 = type_of_aux ~logger context he ugraph in let tlbody_and_type,ugraph2 = List.fold_right ( fun x (l,ugraph) -> let ty,ugraph1 = type_of_aux ~logger context x ugraph in (*let _,ugraph1 = type_of_aux ~logger context ty ugraph1 in*) ((x,ty)::l,ugraph1)) tl ([],ugraph1) in (* TASSI: questa c'era nel mio... ma non nel CVS... *) (* let _,ugraph2 = type_of_aux context hetype ugraph2 in *) eat_prods ~subst context hetype tlbody_and_type ugraph2 | C.Appl _ -> raise (AssertFailure (lazy "Appl: no arguments")) | C.Const (uri,exp_named_subst) -> incr fdebug ; let ugraph1 = check_exp_named_subst ~logger ~subst context exp_named_subst ugraph in let cty,ugraph2 = type_of_constant ~logger uri ugraph1 in let cty1 = CicSubstitution.subst_vars exp_named_subst cty in decr fdebug ; cty1,ugraph2 | C.MutInd (uri,i,exp_named_subst) -> incr fdebug ; let ugraph1 = check_exp_named_subst ~logger ~subst context exp_named_subst ugraph in (* TASSI: da me c'era anche questa, ma in CVS no *) let mty,ugraph2 = type_of_mutual_inductive_defs ~logger uri i ugraph1 in (* fine parte dubbia *) let cty = CicSubstitution.subst_vars exp_named_subst mty in decr fdebug ; cty,ugraph2 | C.MutConstruct (uri,i,j,exp_named_subst) -> let ugraph1 = check_exp_named_subst ~logger ~subst context exp_named_subst ugraph in (* TASSI: idem come sopra *) let mty,ugraph2 = type_of_mutual_inductive_constr ~logger uri i j ugraph1 in let cty = CicSubstitution.subst_vars exp_named_subst mty in cty,ugraph2 | C.MutCase (uri,i,outtype,term,pl) -> let outsort,ugraph1 = type_of_aux ~logger context outtype ugraph in let (need_dummy, k) = let rec guess_args context t = let outtype = CicReduction.whd ~subst context t in match outtype with C.Sort _ -> (true, 0) | C.Prod (name, s, t) -> let (b, n) = guess_args ((Some (name,(C.Decl s)))::context) t in if n = 0 then (* last prod before sort *) match CicReduction.whd ~subst context s with (*CSC: for _ see comment below about the missing named_exp_subst ?????????? *) C.MutInd (uri',i',_) when U.eq uri' uri && i' = i -> (false, 1) (*CSC: for _ see comment below about the missing named_exp_subst ?????????? *) | C.Appl ((C.MutInd (uri',i',_)) :: _) when U.eq uri' uri && i' = i -> (false, 1) | _ -> (true, 1) else (b, n + 1) | _ -> raise (TypeCheckerFailure (lazy (sprintf "Malformed case analasys' output type %s" (CicPp.ppterm outtype)))) in (* let (parameters, arguments, exp_named_subst),ugraph2 = let ty,ugraph2 = type_of_aux context term ugraph1 in match R.whd ~subst context ty with (*CSC manca il caso dei CAST *) (*CSC: ma servono i parametri (uri,i)? Se si', perche' non serve anche il *) (*CSC: parametro exp_named_subst? Se no, perche' non li togliamo? *) (*CSC: Hint: nella DTD servono per gli stylesheet. *) C.MutInd (uri',i',exp_named_subst) as typ -> if U.eq uri uri' && i = i' then ([],[],exp_named_subst),ugraph2 else raise (TypeCheckerFailure (lazy (sprintf ("Case analysys: analysed term type is %s, but is expected to be (an application of) %s#1/%d{_}") (CicPp.ppterm typ) (U.string_of_uri uri) i))) | C.Appl ((C.MutInd (uri',i',exp_named_subst) as typ):: tl) as typ' -> if U.eq uri uri' && i = i' then let params,args = split tl (List.length tl - k) in (params,args,exp_named_subst),ugraph2 else raise (TypeCheckerFailure (lazy (sprintf ("Case analysys: analysed term type is %s, "^ "but is expected to be (an application of) "^ "%s#1/%d{_}") (CicPp.ppterm typ') (U.string_of_uri uri) i))) | _ -> raise (TypeCheckerFailure (lazy (sprintf ("Case analysis: "^ "analysed term %s is not an inductive one") (CicPp.ppterm term)))) *) let (b, k) = guess_args context outsort in if not b then (b, k - 1) else (b, k) in let (parameters, arguments, exp_named_subst),ugraph2 = let ty,ugraph2 = type_of_aux ~logger context term ugraph1 in match R.whd ~subst context ty with C.MutInd (uri',i',exp_named_subst) as typ -> if U.eq uri uri' && i = i' then ([],[],exp_named_subst),ugraph2 else raise (TypeCheckerFailure (lazy (sprintf ("Case analysys: analysed term type is %s (%s#1/%d{_}), but is expected to be (an application of) %s#1/%d{_}") (CicPp.ppterm typ) (U.string_of_uri uri') i' (U.string_of_uri uri) i))) | C.Appl ((C.MutInd (uri',i',exp_named_subst) as typ):: tl) -> if U.eq uri uri' && i = i' then let params,args = split tl (List.length tl - k) in (params,args,exp_named_subst),ugraph2 else raise (TypeCheckerFailure (lazy (sprintf ("Case analysys: analysed term type is %s (%s#1/%d{_}), but is expected to be (an application of) %s#1/%d{_}") (CicPp.ppterm typ) (U.string_of_uri uri') i' (U.string_of_uri uri) i))) | _ -> raise (TypeCheckerFailure (lazy (sprintf "Case analysis: analysed term %s is not an inductive one" (CicPp.ppterm term)))) in (* let's control if the sort elimination is allowed: [(I q1 ... qr)|B] *) let sort_of_ind_type = if parameters = [] then C.MutInd (uri,i,exp_named_subst) else C.Appl ((C.MutInd (uri,i,exp_named_subst))::parameters) in let type_of_sort_of_ind_ty,ugraph3 = type_of_aux ~logger context sort_of_ind_type ugraph2 in let b,ugraph4 = check_allowed_sort_elimination ~subst ~metasenv ~logger context uri i need_dummy sort_of_ind_type type_of_sort_of_ind_ty outsort ugraph3 in if not b then raise (TypeCheckerFailure (lazy ("Case analysis: sort elimination not allowed"))); (* let's check if the type of branches are right *) let parsno,constructorsno = let obj,_ = try CicEnvironment.get_cooked_obj ~trust:false CicUniv.empty_ugraph uri with Not_found -> assert false in match obj with C.InductiveDefinition (il,_,parsno,_) -> let _,_,_,cl = try List.nth il i with Failure _ -> assert false in parsno, List.length cl | _ -> raise (TypeCheckerFailure (lazy ("Unknown mutual inductive definition:" ^ UriManager.string_of_uri uri))) in if List.length pl <> constructorsno then raise (TypeCheckerFailure (lazy ("Wrong number of cases in case analysis"))) ; let (_,branches_ok,ugraph5) = List.fold_left (fun (j,b,ugraph) p -> if b then let cons = if parameters = [] then (C.MutConstruct (uri,i,j,exp_named_subst)) else (C.Appl (C.MutConstruct (uri,i,j,exp_named_subst)::parameters)) in let ty_p,ugraph1 = type_of_aux ~logger context p ugraph in let ty_cons,ugraph3 = type_of_aux ~logger context cons ugraph1 in (* 2 is skipped *) let ty_branch = type_of_branch ~subst context parsno need_dummy outtype cons ty_cons in let b1,ugraph4 = R.are_convertible ~subst ~metasenv context ty_p ty_branch ugraph3 in (* Debugging code if not b1 then begin prerr_endline ("\n!OUTTYPE= " ^ CicPp.ppterm outtype); prerr_endline ("!CONS= " ^ CicPp.ppterm cons); prerr_endline ("!TY_CONS= " ^ CicPp.ppterm ty_cons); prerr_endline ("#### " ^ CicPp.ppterm ty_p ^ "\n<==>\n" ^ CicPp.ppterm ty_branch); end; *) if not b1 then debug_print (lazy ("#### " ^ CicPp.ppterm ty_p ^ " <==> " ^ CicPp.ppterm ty_branch)); (j + 1,b1,ugraph4) else (j,false,ugraph) ) (1,true,ugraph4) pl in if not branches_ok then raise (TypeCheckerFailure (lazy "Case analysys: wrong branch type")); let arguments' = if not need_dummy then outtype::arguments@[term] else outtype::arguments in let outtype = if need_dummy && arguments = [] then outtype else CicReduction.head_beta_reduce (C.Appl arguments') in outtype,ugraph5 | C.Fix (i,fl) -> let types,kl,ugraph1,len = List.fold_left (fun (types,kl,ugraph,len) (n,k,ty,_) -> let _,ugraph1 = type_of_aux ~logger context ty ugraph in (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, k::kl,ugraph1,len+1) ) ([],[],ugraph,0) fl in let ugraph2 = List.fold_left (fun ugraph (name,x,ty,bo) -> let ty_bo,ugraph1 = type_of_aux ~logger (types@context) bo ugraph in let b,ugraph2 = R.are_convertible ~subst ~metasenv (types@context) ty_bo (CicSubstitution.lift len ty) ugraph1 in if b then begin let (m, eaten, context') = eat_lambdas ~subst (types @ context) (x + 1) bo in let rec_uri, rec_uri_len = let he = match List.hd context' with Some (_,Cic.Decl he) -> he | _ -> assert false in match CicReduction.whd ~subst (List.tl context') he with | Cic.MutInd (uri,_,_) | Cic.Appl (Cic.MutInd (uri,_,_)::_) -> uri, (match CicEnvironment.get_obj CicUniv.oblivion_ugraph uri with | Cic.InductiveDefinition (tl,_,_,_), _ -> List.length tl | _ -> assert false) | _ -> assert false in (* let's control the guarded by destructors conditions D{f,k,x,M} *) if not (guarded_by_destructors ~logger ~metasenv ~subst rec_uri rec_uri_len context' eaten (len + eaten) kl 1 [] m) then raise (TypeCheckerFailure (lazy ("Fix: not guarded by destructors:"^CicPp.ppterm t))) else ugraph2 end else raise (TypeCheckerFailure (lazy ("Fix: ill-typed bodies"))) ) ugraph1 fl in (*CSC: controlli mancanti solo su D{f,k,x,M} *) let (_,_,ty,_) = List.nth fl i in ty,ugraph2 | C.CoFix (i,fl) -> let types,ugraph1,len = List.fold_left (fun (l,ugraph,len) (n,ty,_) -> let _,ugraph1 = type_of_aux ~logger context ty ugraph in (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::l, ugraph1,len+1) ) ([],ugraph,0) fl in let ugraph2 = List.fold_left (fun ugraph (_,ty,bo) -> let ty_bo,ugraph1 = type_of_aux ~logger (types @ context) bo ugraph in let b,ugraph2 = R.are_convertible ~subst ~metasenv (types @ context) ty_bo (CicSubstitution.lift len ty) ugraph1 in if b then begin (* let's control that the returned type is coinductive *) match returns_a_coinductive ~subst context ty with None -> raise (TypeCheckerFailure (lazy "CoFix: does not return a coinductive type")) | Some uri -> (* let's control the guarded by constructors conditions C{f,M} *) if not (guarded_by_constructors ~logger ~subst ~metasenv uri (types @ context) 0 len false bo) then raise (TypeCheckerFailure (lazy "CoFix: not guarded by constructors")) else ugraph2 end else raise (TypeCheckerFailure (lazy "CoFix: ill-typed bodies")) ) ugraph1 fl in let (_,ty,_) = List.nth fl i in ty,ugraph2 and check_exp_named_subst ~logger ~subst context = let rec check_exp_named_subst_aux ~logger esubsts l ugraph = match l with [] -> ugraph | ((uri,t) as item)::tl -> let ty_uri,ugraph1 = type_of_variable ~logger uri ugraph in let typeofvar = CicSubstitution.subst_vars esubsts ty_uri in let typeoft,ugraph2 = type_of_aux ~logger context t ugraph1 in let b,ugraph3 = CicReduction.are_convertible ~subst ~metasenv context typeoft typeofvar ugraph2 in if b then check_exp_named_subst_aux ~logger (esubsts@[item]) tl ugraph3 else begin CicReduction.fdebug := 0 ; ignore (CicReduction.are_convertible ~subst ~metasenv context typeoft typeofvar ugraph2) ; fdebug := 0 ; debug typeoft [typeofvar] ; raise (TypeCheckerFailure (lazy "Wrong Explicit Named Substitution")) end in check_exp_named_subst_aux ~logger [] and sort_of_prod ~subst context (name,s) (t1, t2) ugraph = let module C = Cic in let t1' = CicReduction.whd ~subst context t1 in let t2' = CicReduction.whd ~subst ((Some (name,C.Decl s))::context) t2 in match (t1', t2') with (C.Sort s1, C.Sort s2) when (s2 = C.Prop or s2 = C.Set or s2 = C.CProp) -> (* different from Coq manual!!! *) C.Sort s2,ugraph | (C.Sort (C.Type t1), C.Sort (C.Type t2)) -> (* TASSI: CONSRTAINTS: the same in doubletypeinference, cicrefine *) let t' = CicUniv.fresh() in (try let ugraph1 = CicUniv.add_ge t' t1 ugraph in let ugraph2 = CicUniv.add_ge t' t2 ugraph1 in C.Sort (C.Type t'),ugraph2 with CicUniv.UniverseInconsistency msg -> raise (TypeCheckerFailure msg)) | (C.Sort _,C.Sort (C.Type t1)) -> (* TASSI: CONSRTAINTS: the same in doubletypeinference, cicrefine *) C.Sort (C.Type t1),ugraph (* c'e' bisogno di un fresh? *) | (C.Meta _, C.Sort _) -> t2',ugraph | (C.Meta _, (C.Meta (_,_) as t)) | (C.Sort _, (C.Meta (_,_) as t)) when CicUtil.is_closed t -> t2',ugraph | (_,_) -> raise (TypeCheckerFailure (lazy (sprintf "Prod: expected two sorts, found = %s, %s" (CicPp.ppterm t1') (CicPp.ppterm t2')))) and eat_prods ~subst context hetype l ugraph = (*CSC: siamo sicuri che le are_convertible non lavorino con termini non *) (*CSC: cucinati *) match l with [] -> hetype,ugraph | (hete, hety)::tl -> (match (CicReduction.whd ~subst context hetype) with Cic.Prod (n,s,t) -> let b,ugraph1 = (*if (match hety,s with Cic.Sort _,Cic.Sort _ -> false | _,_ -> true) && hety <> s then( prerr_endline ("AAA22: " ^ CicPp.ppterm hete ^ ": " ^ CicPp.ppterm hety ^ " <==> " ^ CicPp.ppterm s); let res = CicReduction.are_convertible ~subst ~metasenv context hety s ugraph in prerr_endline "#"; res) else*) CicReduction.are_convertible ~subst ~metasenv context hety s ugraph in if b then begin CicReduction.fdebug := -1 ; eat_prods ~subst context (CicSubstitution.subst ~avoid_beta_redexes:true hete t) tl ugraph1 (*TASSI: not sure *) end else begin CicReduction.fdebug := 0 ; ignore (CicReduction.are_convertible ~subst ~metasenv context s hety ugraph) ; fdebug := 0 ; debug s [hety] ; raise (TypeCheckerFailure (lazy (sprintf ("Appl: wrong parameter-type, expected %s, found %s") (CicPp.ppterm hetype) (CicPp.ppterm s)))) end | _ -> raise (TypeCheckerFailure (lazy "Appl: this is not a function, it cannot be applied")) ) and returns_a_coinductive ~subst context ty = let module C = Cic in match CicReduction.whd ~subst context ty with C.MutInd (uri,i,_) -> (*CSC: definire una funzioncina per questo codice sempre replicato *) let obj,_ = try CicEnvironment.get_cooked_obj ~trust:false CicUniv.empty_ugraph uri with Not_found -> assert false in (match obj with C.InductiveDefinition (itl,_,_,_) -> let (_,is_inductive,_,_) = List.nth itl i in if is_inductive then None else (Some uri) | _ -> raise (TypeCheckerFailure (lazy ("Unknown mutual inductive definition:" ^ UriManager.string_of_uri uri))) ) | C.Appl ((C.MutInd (uri,i,_))::_) -> (let o,_ = CicEnvironment.get_obj CicUniv.empty_ugraph uri in match o with C.InductiveDefinition (itl,_,_,_) -> let (_,is_inductive,_,_) = List.nth itl i in if is_inductive then None else (Some uri) | _ -> raise (TypeCheckerFailure (lazy ("Unknown mutual inductive definition:" ^ UriManager.string_of_uri uri))) ) | C.Prod (n,so,de) -> returns_a_coinductive ~subst ((Some (n,C.Decl so))::context) de | _ -> None in (*CSC debug_print (lazy ("INIZIO TYPE_OF_AUX " ^ CicPp.ppterm t)) ; flush stderr ; let res = *) type_of_aux ~logger context t ugraph (* in debug_print (lazy "FINE TYPE_OF_AUX") ; flush stderr ; res *) (* is a small constructor? *) (*CSC: ottimizzare calcolando staticamente *) and is_small_or_non_informative ~condition ~logger context paramsno c ugraph = let rec is_small_or_non_informative_aux ~logger context c ugraph = let module C = Cic in match CicReduction.whd context c with C.Prod (n,so,de) -> let s,ugraph1 = type_of_aux' ~logger [] context so ugraph in let b = condition s in if b then is_small_or_non_informative_aux ~logger ((Some (n,(C.Decl so)))::context) de ugraph1 else false,ugraph1 | _ -> true,ugraph (*CSC: we trust the type-checker *) in let (context',dx) = split_prods ~subst:[] context paramsno c in is_small_or_non_informative_aux ~logger context' dx ugraph and is_small ~logger = is_small_or_non_informative ~condition:(fun s -> s=Cic.Sort Cic.Prop || s=Cic.Sort Cic.Set) ~logger and is_non_informative ~logger = is_small_or_non_informative ~condition:(fun s -> s=Cic.Sort Cic.Prop) ~logger and type_of ~logger t ugraph = (*CSC debug_print (lazy ("INIZIO TYPE_OF_AUX' " ^ CicPp.ppterm t)) ; flush stderr ; let res = *) type_of_aux' ~logger [] [] t ugraph (*CSC in debug_print (lazy "FINE TYPE_OF_AUX'") ; flush stderr ; res *) ;; let typecheck_obj0 ~logger uri (obj,unchecked_ugraph) = let module C = Cic in let ugraph = CicUniv.empty_ugraph in let inferred_ugraph = match obj with | C.Constant (_,Some te,ty,_,_) -> let _,ugraph = type_of ~logger ty ugraph in let ty_te,ugraph = type_of ~logger te ugraph in let b,ugraph = (CicReduction.are_convertible [] ty_te ty ugraph) in if not b then raise (TypeCheckerFailure (lazy ("the type of the body is not the one expected:\n" ^ CicPp.ppterm ty_te ^ "\nvs\n" ^ CicPp.ppterm ty))) else ugraph | C.Constant (_,None,ty,_,_) -> (* only to check that ty is well-typed *) let _,ugraph = type_of ~logger ty ugraph in ugraph | C.CurrentProof (_,conjs,te,ty,_,_) -> (* this block is broken since the metasenv should * be topologically sorted before typing metas *) ignore(assert false); let _,ugraph = List.fold_left (fun (metasenv,ugraph) ((_,context,ty) as conj) -> let _,ugraph = type_of_aux' ~logger metasenv context ty ugraph in metasenv @ [conj],ugraph ) ([],ugraph) conjs in let _,ugraph = type_of_aux' ~logger conjs [] ty ugraph in let type_of_te,ugraph = type_of_aux' ~logger conjs [] te ugraph in let b,ugraph = CicReduction.are_convertible [] type_of_te ty ugraph in if not b then raise (TypeCheckerFailure (lazy (sprintf "the current proof is not well typed because the type %s of the body is not convertible to the declared type %s" (CicPp.ppterm type_of_te) (CicPp.ppterm ty)))) else ugraph | C.Variable (_,bo,ty,_,_) -> (* only to check that ty is well-typed *) let _,ugraph = type_of ~logger ty ugraph in (match bo with None -> ugraph | Some bo -> let ty_bo,ugraph = type_of ~logger bo ugraph in let b,ugraph = CicReduction.are_convertible [] ty_bo ty ugraph in if not b then raise (TypeCheckerFailure (lazy "the body is not the one expected")) else ugraph ) | (C.InductiveDefinition _ as obj) -> check_mutual_inductive_defs ~logger uri obj ugraph in check_and_clean_ugraph inferred_ugraph unchecked_ugraph uri obj ;; let typecheck uri = let module C = Cic in let module R = CicReduction in let module U = UriManager in let logger = new CicLogger.logger in match CicEnvironment.is_type_checked ~trust:false CicUniv.empty_ugraph uri with | CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' | CicEnvironment.UncheckedObj (uobj,unchecked_ugraph) -> (* let's typecheck the uncooked object *) logger#log (`Start_type_checking uri) ; let ugraph, ul, obj = typecheck_obj0 ~logger uri (uobj,unchecked_ugraph) in CicEnvironment.set_type_checking_info uri (obj,ugraph,ul); logger#log (`Type_checking_completed uri); match CicEnvironment.is_type_checked ~trust:false CicUniv.empty_ugraph uri with | CicEnvironment.CheckedObj (cobj,ugraph') -> cobj,ugraph' | _ -> raise CicEnvironmentError ;; let typecheck_obj ~logger uri obj = let ugraph,univlist,obj = typecheck_obj0 ~logger uri (obj,None) in CicEnvironment.add_type_checked_obj uri (obj,ugraph,univlist) (** wrappers which instantiate fresh loggers *) let profiler = HExtlib.profile "K/CicTypeChecker.type_of_aux'" let type_of_aux' ?(subst = []) metasenv context t ugraph = let logger = new CicLogger.logger in profiler.HExtlib.profile (type_of_aux' ~logger ~subst metasenv context t) ugraph let typecheck_obj uri obj = let logger = new CicLogger.logger in typecheck_obj ~logger uri obj (* check_allowed_sort_elimination uri i s1 s2 This function is used outside the kernel to determine in advance whether a MutCase will be allowed or not. [uri,i] is the type of the term to match [s1] is the sort of the term to eliminate (i.e. the head of the arity of the inductive type [uri,i]) [s2] is the sort of the goal (i.e. the head of the type of the outtype of the MutCase) *) let check_allowed_sort_elimination uri i s1 s2 = fst (check_allowed_sort_elimination ~subst:[] ~metasenv:[] ~logger:(new CicLogger.logger) [] uri i true (Cic.Implicit None) (* never used *) (Cic.Sort s1) (Cic.Sort s2) CicUniv.empty_ugraph) ;; Deannotate.type_of_aux' := fun context t -> ignore ( List.fold_right (fun el context -> (match el with None -> () | Some (_,Cic.Decl ty) -> ignore (type_of_aux' [] context ty CicUniv.empty_ugraph) | Some (_,Cic.Def (bo,ty)) -> ignore (type_of_aux' [] context ty CicUniv.empty_ugraph); ignore (type_of_aux' [] context bo CicUniv.empty_ugraph)); el::context ) context []); fst (type_of_aux' [] context t CicUniv.empty_ugraph);;