(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) (* $Id$ *) (* TODO unify exceptions *) exception WrongUriToInductiveDefinition;; exception Impossible of int;; exception ReferenceToConstant;; exception ReferenceToVariable;; exception ReferenceToCurrentProof;; exception ReferenceToInductiveDefinition;; let debug = false let profile = false let debug_print s = if debug then prerr_endline (Lazy.force s) let fdebug = ref 1;; let debug t env s = let rec debug_aux t i = let module C = Cic in let module U = UriManager in CicPp.ppobj (C.Variable ("DEBUG", None, t, [], [])) ^ "\n" ^ i in if !fdebug = 0 then debug_print (lazy (s ^ "\n" ^ List.fold_right debug_aux (t::env) "")) ;; module type Strategy = sig type stack_term type env_term type config = int * env_term list * NCic.term * stack_term list val to_env : reduce: (config -> config) -> unwind: (config -> NCic.term) -> config -> env_term val from_stack : stack_term -> config val from_stack_list_for_unwind : unwind: (config -> NCic.term) -> stack_term list -> NCic.term list val from_env : env_term -> config val from_env_for_unwind : unwind: (config -> NCic.term) -> env_term -> NCic.term val stack_to_env : reduce: (config -> config) -> unwind: (config -> NCic.term) -> stack_term -> env_term val compute_to_env : reduce: (config -> config) -> unwind: (config -> NCic.term) -> int -> env_term list -> NCic.term -> env_term val compute_to_stack : reduce: (config -> config) -> unwind: (config -> NCic.term) -> config -> stack_term end ;; module CallByValueByNameForUnwind' = struct type config = int * env_term list * NCic.term * stack_term list and stack_term = config lazy_t * NCic.term lazy_t (* cbv, cbn *) and env_term = config lazy_t * NCic.term lazy_t (* cbv, cbn *) let to_env ~reduce ~unwind c = lazy (reduce c),lazy (unwind c) let from_stack (c,_) = Lazy.force c let from_stack_list_for_unwind ~unwind:_ l = List.map (function (_,c) -> Lazy.force c) l let from_env (c,_) = Lazy.force c let from_env_for_unwind ~unwind:_ (_,c) = Lazy.force c let stack_to_env ~reduce:_ ~unwind:_ config = config let compute_to_env ~reduce ~unwind k e t = lazy (reduce (k,e,t,[])), lazy (unwind (k,e,t,[])) let compute_to_stack ~reduce ~unwind config = lazy (reduce config), lazy (unwind config) end ;; (* {{{ module CallByValueByNameForUnwind = struct type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list and stack_term = config and env_term = config * config (* cbv, cbn *) and ens_term = config * config (* cbv, cbn *) let to_env c = c,c let to_ens c = c,c let from_stack config = config let from_stack_list_for_unwind ~unwind l = List.map unwind l let from_env (c,_) = c let from_ens (c,_) = c let from_env_for_unwind ~unwind (_,c) = unwind c let from_ens_for_unwind ~unwind (_,c) = unwind c let stack_to_env ~reduce ~unwind config = reduce config, (0,[],[],unwind config,[]) let compute_to_env ~reduce ~unwind k e ens t = (k,e,ens,t,[]), (k,e,ens,t,[]) let compute_to_stack ~reduce ~unwind config = config end ;; (* Old Machine *) module CallByNameStrategy = struct type stack_term = Cic.term type env_term = Cic.term type ens_term = Cic.term type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list let to_env v = v let to_ens v = v let from_stack ~unwind v = v let from_stack_list ~unwind l = l let from_env v = v let from_ens v = v let from_env_for_unwind ~unwind v = v let from_ens_for_unwind ~unwind v = v let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens t = unwind k e ens t let compute_to_env ~reduce ~unwind k e ens t = unwind k e ens t end ;; module CallByNameStrategy = struct type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list and stack_term = config and env_term = config and ens_term = config let to_env c = c let to_ens c = c let from_stack config = config let from_stack_list_for_unwind ~unwind l = List.map unwind l let from_env c = c let from_ens c = c let from_env_for_unwind ~unwind c = unwind c let from_ens_for_unwind ~unwind c = unwind c let stack_to_env ~reduce ~unwind config = 0,[],[],unwind config,[] let compute_to_env ~reduce ~unwind k e ens t = k,e,ens,t,[] let compute_to_stack ~reduce ~unwind config = config end ;; module CallByValueStrategy = struct type stack_term = Cic.term type env_term = Cic.term type ens_term = Cic.term type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list let to_env v = v let to_ens v = v let from_stack ~unwind v = v let from_stack_list ~unwind l = l let from_env v = v let from_ens v = v let from_env_for_unwind ~unwind v = v let from_ens_for_unwind ~unwind v = v let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[]) let compute_to_env ~reduce ~unwind k e ens t = reduce (k,e,ens,t,[]) end ;; module CallByValueStrategyByNameOnConstants = struct type stack_term = Cic.term type env_term = Cic.term type ens_term = Cic.term type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list let to_env v = v let to_ens v = v let from_stack ~unwind v = v let from_stack_list ~unwind l = l let from_env v = v let from_ens v = v let from_env_for_unwind ~unwind v = v let from_ens_for_unwind ~unwind v = v let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens = function Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[]) let compute_to_env ~reduce ~unwind k e ens = function Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[]) end ;; module LazyCallByValueStrategy = struct type stack_term = Cic.term lazy_t type env_term = Cic.term lazy_t type ens_term = Cic.term lazy_t type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list let to_env v = lazy v let to_ens v = lazy v let from_stack ~unwind v = Lazy.force v let from_stack_list ~unwind l = List.map (from_stack ~unwind) l let from_env v = Lazy.force v let from_ens v = Lazy.force v let from_env_for_unwind ~unwind v = Lazy.force v let from_ens_for_unwind ~unwind v = Lazy.force v let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[])) let compute_to_env ~reduce ~unwind k e ens t = lazy (reduce (k,e,ens,t,[])) end ;; module LazyCallByValueStrategyByNameOnConstants = struct type stack_term = Cic.term lazy_t type env_term = Cic.term lazy_t type ens_term = Cic.term lazy_t type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list let to_env v = lazy v let to_ens v = lazy v let from_stack ~unwind v = Lazy.force v let from_stack_list ~unwind l = List.map (from_stack ~unwind) l let from_env v = Lazy.force v let from_ens v = Lazy.force v let from_env_for_unwind ~unwind v = Lazy.force v let from_ens_for_unwind ~unwind v = Lazy.force v let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens t = lazy ( match t with Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[])) let compute_to_env ~reduce ~unwind k e ens t = lazy ( match t with Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[])) end ;; module LazyCallByNameStrategy = struct type stack_term = Cic.term lazy_t type env_term = Cic.term lazy_t type ens_term = Cic.term lazy_t type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list let to_env v = lazy v let to_ens v = lazy v let from_stack ~unwind v = Lazy.force v let from_stack_list ~unwind l = List.map (from_stack ~unwind) l let from_env v = Lazy.force v let from_ens v = Lazy.force v let from_env_for_unwind ~unwind v = Lazy.force v let from_ens_for_unwind ~unwind v = Lazy.force v let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens t = lazy (unwind k e ens t) let compute_to_env ~reduce ~unwind k e ens t = lazy (unwind k e ens t) end ;; module LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns = struct type stack_term = reduce:bool -> Cic.term type env_term = reduce:bool -> Cic.term type ens_term = reduce:bool -> Cic.term type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list let to_env v = let value = lazy v in fun ~reduce -> Lazy.force value let to_ens v = let value = lazy v in fun ~reduce -> Lazy.force value let from_stack ~unwind v = (v ~reduce:false) let from_stack_list ~unwind l = List.map (from_stack ~unwind) l let from_env v = (v ~reduce:true) let from_ens v = (v ~reduce:true) let from_env_for_unwind ~unwind v = (v ~reduce:true) let from_ens_for_unwind ~unwind v = (v ~reduce:true) let stack_to_env ~reduce ~unwind v = v let compute_to_stack ~reduce ~unwind k e ens t = let svalue = lazy ( match t with Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[]) ) in let lvalue = lazy (unwind k e ens t) in fun ~reduce -> if reduce then Lazy.force svalue else Lazy.force lvalue let compute_to_env ~reduce ~unwind k e ens t = let svalue = lazy ( match t with Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[]) ) in let lvalue = lazy (unwind k e ens t) in fun ~reduce -> if reduce then Lazy.force svalue else Lazy.force lvalue end ;; module ClosuresOnStackByValueFromEnvOrEnsStrategy = struct type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list and stack_term = config and env_term = config and ens_term = config let to_env config = config let to_ens config = config let from_stack config = config let from_stack_list_for_unwind ~unwind l = List.map unwind l let from_env v = v let from_ens v = v let from_env_for_unwind ~unwind config = unwind config let from_ens_for_unwind ~unwind config = unwind config let stack_to_env ~reduce ~unwind config = reduce config let compute_to_env ~reduce ~unwind k e ens t = (k,e,ens,t,[]) let compute_to_stack ~reduce ~unwind config = config end ;; module ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy = struct type stack_term = int * Cic.term list * Cic.term Cic.explicit_named_substitution * Cic.term type env_term = Cic.term type ens_term = Cic.term type config = int * env_term list * ens_term Cic.explicit_named_substitution * Cic.term * stack_term list let to_env v = v let to_ens v = v let from_stack ~unwind (k,e,ens,t) = unwind k e ens t let from_stack_list ~unwind l = List.map (from_stack ~unwind) l let from_env v = v let from_ens v = v let from_env_for_unwind ~unwind v = v let from_ens_for_unwind ~unwind v = v let stack_to_env ~reduce ~unwind (k,e,ens,t) = match t with Cic.Const _ as t -> unwind k e ens t | t -> reduce (k,e,ens,t,[]) let compute_to_env ~reduce ~unwind k e ens t = unwind k e ens t let compute_to_stack ~reduce ~unwind k e ens t = (k,e,ens,t) end ;; }}} *) module Reduction(RS : Strategy) = struct type env = RS.env_term list type stack = RS.stack_term list type config = int * env * NCic.term * stack let rec unwind (k,e,t,s) = let t = if k = 0 then t else NCicSubstitution.psubst ~avoid_beta_redexes:true true 0 (RS.from_env_for_unwind ~unwind) e t in if s = [] then t else NCic.Appl(t::(RS.from_stack_list_for_unwind ~unwind s)) ;; let list_nth l n = try List.nth l n with Failure _ -> assert false;; let rec replace i s t = match i,s with | 0,_::tl -> t::tl | n,he::tl -> he::(replace (n - 1) tl t) | _,_ -> assert false ;; let rec reduce ~delta ?(subst = []) context : config -> config = let rec aux = function | k, e, NCic.Rel n, s when n <= k -> let k',e',t',s' = RS.from_env (list_nth e (n-1)) in aux (k',e',t',s'@s) | k, _, NCic.Rel n, s as config (* when n > k *) -> (match List.nth context (n - 1 - k) with | (_,NCic.Decl _) -> config | (_,NCic.Def (x,_)) -> aux (0,[],NCicSubstitution.lift (n - k) x,s)) | (k, e, NCic.Meta (n,l), s) as config -> (try let _,_, term,_ = NCicUtils.lookup_subst n subst in aux (k, e, NCicSubstitution.subst_meta l term,s) with NCicUtils.Subst_not_found _ -> config) | (_, _, NCic.Sort _, _) as config -> config | (_, _, NCic.Implicit _, _) -> assert false | (_, _, NCic.Prod _, _) as config -> config | (_, _, NCic.Lambda _, []) as config -> config | (k, e, NCic.Lambda (_,_,t), p::s) -> aux (k+1, (RS.stack_to_env ~reduce:aux ~unwind p)::e, t,s) | (k, e, NCic.LetIn (_,_,m,t), s) -> let m' = RS.compute_to_env ~reduce:aux ~unwind k e m in aux (k+1, m'::e, t, s) | (_, _, NCic.Appl [], _) -> assert false | (k, e, NCic.Appl (he::tl), s) -> let tl' = List.map (fun t->RS.compute_to_stack ~reduce:aux ~unwind (k,e,t,[])) tl in aux (k, e, he, tl' @ s) | (_, _, NCic.Const (NReference.Ref (_,_,NReference.Def) as refer), s) as config -> let _,_,body,_,_,height = NCicEnvironment.get_checked_def refer in if delta > height then config else aux (0, [], body, s) | (_, _, NCic.Const (NReference.Ref (_,_,NReference.Fix (fixno,recindex)) as refer),s) as config -> let fixes,_, height = NCicEnvironment.get_checked_fixes refer in if delta > height then config else (match try Some (RS.from_stack (List.nth s recindex)) with Failure _ -> None with | None -> config | Some recparam -> match reduce ~delta:0 ~subst context recparam with | (_,_,NCic.Const (NReference.Ref (_,_,NReference.Con _)), _) as c -> let new_s = replace recindex s (RS.compute_to_stack ~reduce:aux ~unwind c) in let _,_,_,_,body = List.nth fixes fixno in aux (0, [], body, new_s) | _ -> config) | (_, _, NCic.Const _, _) as config -> config | (k, e, NCic.Match (_,_,term,pl),s) as config -> let decofix = function | (_,_,NCic.Const(NReference.Ref(_,_,NReference.CoFix c)as refer),s)-> let cofixes,_,_ = NCicEnvironment.get_checked_cofixes refer in let _,_,_,_,body = List.nth cofixes c in reduce ~delta:0 ~subst context (0,[],body,s) | config -> config in (match decofix (reduce ~delta:0 ~subst context (k,e,term,[])) with | (_, _, NCic.Const (NReference.Ref (_,_,NReference.Con (_,j))),[]) -> aux (k, e, List.nth pl (j-1), s) | (_, _, NCic.Const (NReference.Ref (_,_,NReference.Con (_,j)) as refer), s') -> let leftno = NCicEnvironment.get_indty_leftno refer in let _,params = HExtlib.split_nth leftno s' in aux (k, e, List.nth pl (j-1), params@s) | _ -> config) in aux ;; let whd ?(delta=0) ?(subst=[]) context t = unwind (reduce ~delta ~subst context (0, [], t, [])) ;; end ;; (* {{{ ROTTO = rompe l'unificazione poiche' riduce gli argomenti di un'applicazione senza ridurre la testa module R = Reduction CallByNameStrategy;; OK 56.368s module R = Reduction CallByValueStrategy;; ROTTO module R = Reduction CallByValueStrategyByNameOnConstants;; ROTTO module R = Reduction LazyCallByValueStrategy;; ROTTO module R = Reduction LazyCallByValueStrategyByNameOnConstants;; ROTTO module R = Reduction LazyCallByNameStrategy;; OK 0m56.398s module R = Reduction LazyCallByValueByNameOnConstantsWhenFromStack_ByNameStrategyWhenFromEnvOrEns;; OK 59.058s module R = Reduction ClosuresOnStackByValueFromEnvOrEnsStrategy;; OK 58.583s module R = Reduction ClosuresOnStackByValueFromEnvOrEnsByNameOnConstantsStrategy;; OK 58.094s module R = Reduction(ClosuresOnStackByValueFromEnvOrEnsStrategy);; OK 58.127s module R = Reduction(CallByValueByNameForUnwind);; module R = Reduction(CallByNameStrategy);; module R = Reduction(ClosuresOnStackByValueFromEnvOrEnsStrategy);;}}} *) module RS = CallByValueByNameForUnwind';; module R = Reduction(RS);; module U = UriManager;; let whd = R.whd (* let whd = let profiler_whd = HExtlib.profile ~enable:profile "are_convertible.whd" in fun ?(delta=true) ?(subst=[]) context t -> profiler_whd.HExtlib.profile (whd ~delta ~subst context) t *) (* mimic ocaml (<< 3.08) "=" behaviour. Tests physical equality first then * fallbacks to structural equality *) let (===) x y = Pervasives.compare x y = 0 ;; module C = NCic (* t1, t2 must be well-typed *) let are_convertible whd ?(subst=[]) ?(metasenv=[]) = let rec aux test_equality_only context t1 t2 = let rec aux2 test_equality_only t1 t2 = if t1 === t2 then true else match (t1,t2) with | (C.Sort (C.Type a), C.Sort (C.Type b)) -> a <= b | (C.Sort s1,C.Sort (C.Type _)) -> (not test_equality_only) | (C.Sort s1, C.Sort s2) -> s1 = s2 | (C.Prod (name1,s1,t1), C.Prod(_,s2,t2)) -> aux true context s1 s2 && aux test_equality_only ((name1, C.Decl s1)::context) t1 t2 | (C.Lambda (name1,s1,t1), C.Lambda(_,s2,t2)) -> aux true context s1 s2 && aux true ((name1, C.Decl s1)::context) t1 t2 | (C.LetIn (name1,ty1,s1,t1), C.LetIn(_,ty2,s2,t2)) -> aux test_equality_only context ty1 ty2 && aux test_equality_only context s1 s2 && aux test_equality_only ((name1, C.Def (s1,ty1))::context) t1 t2 | (C.Meta (n1,(s1, C.Irl i1)), C.Meta (n2,(s2, C.Irl i2))) when n1 = n2 && s1 = s2 -> true | (C.Meta (n1,(s1, l1)), C.Meta (n2,(s2, l2))) when n1 = n2 -> let l1 = NCicUtils.expand_local_context l1 in let l2 = NCicUtils.expand_local_context l2 in (try List.for_all2 (fun t1 t2 -> aux test_equality_only context (NCicSubstitution.lift s1 t1) (NCicSubstitution.lift s2 t2)) l1 l2 with Invalid_argument _ -> false) | C.Meta (n1,l1), _ -> (try let _,_,term,_ = NCicUtils.lookup_subst n1 subst in let term = NCicSubstitution.subst_meta l1 term in aux test_equality_only context term t2 with NCicUtils.Subst_not_found _ -> false) | _, C.Meta (n2,l2) -> (try let _,_,term,_ = NCicUtils.lookup_subst n2 subst in let term = NCicSubstitution.subst_meta l2 term in aux test_equality_only context t1 term with NCicUtils.Subst_not_found _ -> false) | (C.Appl l1, C.Appl l2) -> (try List.for_all2 (aux test_equality_only context) l1 l2 with Invalid_argument _ -> false) | (C.Match (ref1,outtype1,term1,pl1), C.Match (ref2,outtype2,term2,pl2)) -> NReference.eq ref1 ref2 && aux test_equality_only context outtype1 outtype2 && aux test_equality_only context term1 term2 && (try List.for_all2 (aux test_equality_only context) pl1 pl2 with Invalid_argument _ -> false) | (C.Implicit _, _) | (_, C.Implicit _) -> assert false | (_,_) -> false in if aux2 test_equality_only t1 t2 then true else let rec convert_machines = function | [] -> true | ((k1,env1,h1,s1),(k2,env2,h2,s2))::tl -> aux2 test_equality_only (R.unwind (k1,env1,h1,[])) (R.unwind (k2,env2,h2,[])) && let problems = let red_stack = List.map (fun si-> R.reduce ~delta:0 ~subst context(RS.from_stack si)) in try Some (List.combine (red_stack s1) (red_stack s2) @ tl) with Invalid_argument _ -> None in match problems with | None -> false | Some problems -> convert_machines problems in convert_machines [R.reduce ~delta:0 ~subst context (0,[],t1,[]), R.reduce ~delta:0 ~subst context (0,[],t2,[])] in aux false ;; let are_convertible = are_convertible whd let rec head_beta_reduce ?(delta=max_int) ?(upto=(-1)) t l = match upto, t, l with | 0, C.Appl l1, _ -> C.Appl (l1 @ l) | 0, t, [] -> t | 0, t, _ -> C.Appl (t::l) | _, C.Appl (hd::tl), _ -> head_beta_reduce ~delta ~upto hd (tl @ l) | _, C.Lambda(_,_,bo), arg::tl -> let bo = NCicSubstitution.subst arg bo in head_beta_reduce ~delta ~upto:(upto - 1) bo tl | _, C.Const (NReference.Ref (height, _, NReference.Def) as re), _ when delta <= height -> let _, _, bo, _, _, _ = NCicEnvironment.get_checked_def re in head_beta_reduce ~upto ~delta bo l | _, t, [] -> t | _, t, _ -> C.Appl (t::l) ;; let head_beta_reduce ?delta ?upto t = head_beta_reduce ?delta ?upto t [];; (* vim:set foldmethod=marker: *)