(* ||M|| This file is part of HELM, an Hypertextual, Electronic ||A|| Library of Mathematics, developed at the Computer Science ||T|| Department, University of Bologna, Italy. ||I|| ||T|| HELM is free software; you can redistribute it and/or ||A|| modify it under the terms of the GNU General Public License \ / version 2 or (at your option) any later version. \ / This software is distributed as is, NO WARRANTY. V_______________________________________________________________ *) (* $Id: nCicReduction.ml 8250 2008-03-25 17:56:20Z tassi $ *) (* web interface stuff *) let logger = ref (function (`Start_type_checking _|`Type_checking_completed _) -> ()) ;; let set_logger f = logger := f;; exception TypeCheckerFailure of string Lazy.t exception AssertFailure of string Lazy.t type recf_entry = | Evil of int (* rno *) | UnfFix of bool list (* fixed arguments *) | Safe ;; let is_dangerous i l = List.exists (function (j,Evil _) when j=i -> true | _ -> false) l ;; let is_unfolded i l = List.exists (function (j,UnfFix _) when j=i -> true | _ -> false) l ;; let is_safe i l = List.exists (function (j,Safe) when j=i -> true | _ -> false) l ;; let get_recno i l = try match List.assoc i l with Evil rno -> rno | _ -> assert false with Not_found -> assert false ;; let get_fixed_args i l = try match List.assoc i l with UnfFix fa -> fa | _ -> assert false with Not_found -> assert false ;; let shift_k e (c,rf,x) = e::c,List.map (fun (k,v) -> k+1,v) rf,x+1;; let string_of_recfuns ~subst ~metasenv ~context l = let pp = NCicPp.ppterm ~subst ~metasenv ~context in let safe, rest = List.partition (function (_,Safe) -> true | _ -> false) l in let dang, unf = List.partition (function (_,UnfFix _) -> false | _->true)rest in "\n\tsafes: "^String.concat "," (List.map (fun (i,_)->pp (NCic.Rel i)) safe) ^ "\n\tfix : "^String.concat "," (List.map (function (i,UnfFix l)-> pp(NCic.Rel i)^"/"^String.concat "," (List.map string_of_bool l) | _ ->assert false) unf) ^ "\n\trec : "^String.concat "," (List.map (function (i,Evil rno)->pp(NCic.Rel i)^"/"^string_of_int rno | _ -> assert false) dang) ;; let fixed_args bos j n nn = let rec aux k acc = function | NCic.Appl (NCic.Rel i::args) when i-k > n && i-k <= nn -> let rec combine l1 l2 = match l1,l2 with [],[] -> [] | he1::tl1, he2::tl2 -> (he1,he2)::combine tl1 tl2 | he::tl, [] -> (false,NCic.Rel ~-1)::combine tl [] (* dummy term *) | [],_::_ -> assert false in let lefts, _ = HExtlib.split_nth (min j (List.length args)) args in List.map (fun ((b,x),i) -> b && x = NCic.Rel (k-i)) (HExtlib.list_mapi (fun x i -> x,i) (combine acc lefts)) | t -> NCicUtils.fold (fun _ k -> k+1) k aux acc t in List.fold_left (aux 0) (let rec f = function 0 -> [] | n -> true :: f (n-1) in f j) bos ;; let rec list_iter_default2 f l1 def l2 = match l1,l2 with | [], _ -> () | a::ta, b::tb -> f a b; list_iter_default2 f ta def tb | a::ta, [] -> f a def; list_iter_default2 f ta def [] ;; (* (* the boolean h means already protected *) (* args is the list of arguments the type of the constructor that may be *) (* found in head position must be applied to. *) and guarded_by_constructors ~subst context n nn h te args coInductiveTypeURI = let module C = Cic in (*CSC: There is a lot of code replication between the cases X and *) (*CSC: (C.Appl X tl). Maybe it will be better to define a function *) (*CSC: that maps X into (C.Appl X []) when X is not already a C.Appl *) match CicReduction.whd ~subst context te with C.Rel m when m > n && m <= nn -> h | C.Rel _ -> true | C.Meta _ | C.Sort _ | C.Implicit _ | C.Cast _ | C.Prod _ | C.LetIn _ -> (* the term has just been type-checked *) raise (AssertFailure (lazy "17")) | C.Lambda (name,so,de) -> does_not_occur ~subst context n nn so && guarded_by_constructors ~subst ((Some (name,(C.Decl so)))::context) (n + 1) (nn + 1) h de args coInductiveTypeURI | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> h && List.fold_right (fun x i -> i && does_not_occur ~subst context n nn x) tl true | C.Appl ((C.MutConstruct (uri,i,j,exp_named_subst))::tl) -> let consty = let obj,_ = try CicEnvironment.get_cooked_obj ~trust:false CicUniv.empty_ugraph uri with Not_found -> assert false in match obj with C.InductiveDefinition (itl,_,_,_) -> let (_,_,_,cl) = List.nth itl i in let (_,cons) = List.nth cl (j - 1) in CicSubstitution.subst_vars exp_named_subst cons | _ -> raise (TypeCheckerFailure (lazy ("Unknown mutual inductive definition:" ^ UriManager.string_of_uri uri))) in let rec analyse_branch context ty te = match CicReduction.whd ~subst context ty with C.Meta _ -> raise (AssertFailure (lazy "34")) | C.Rel _ | C.Var _ | C.Sort _ -> does_not_occur ~subst context n nn te | C.Implicit _ | C.Cast _ -> raise (AssertFailure (lazy "24"))(* due to type-checking *) | C.Prod (name,so,de) -> analyse_branch ((Some (name,(C.Decl so)))::context) de te | C.Lambda _ | C.LetIn _ -> raise (AssertFailure (lazy "25"))(* due to type-checking *) | C.Appl ((C.MutInd (uri,_,_))::_) when uri == coInductiveTypeURI -> guarded_by_constructors ~subst context n nn true te [] coInductiveTypeURI | C.Appl ((C.MutInd (uri,_,_))::_) -> guarded_by_constructors ~subst context n nn true te tl coInductiveTypeURI | C.Appl _ -> does_not_occur ~subst context n nn te | C.Const _ -> raise (AssertFailure (lazy "26")) | C.MutInd (uri,_,_) when uri == coInductiveTypeURI -> guarded_by_constructors ~subst context n nn true te [] coInductiveTypeURI | C.MutInd _ -> does_not_occur ~subst context n nn te | C.MutConstruct _ -> raise (AssertFailure (lazy "27")) (*CSC: we do not consider backbones with a MutCase, Fix, Cofix *) (*CSC: in head position. *) | C.MutCase _ | C.Fix _ | C.CoFix _ -> raise (AssertFailure (lazy "28"))(* due to type-checking *) in let rec analyse_instantiated_type context ty l = match CicReduction.whd ~subst context ty with C.Rel _ | C.Var _ | C.Meta _ | C.Sort _ | C.Implicit _ | C.Cast _ -> raise (AssertFailure (lazy "29"))(* due to type-checking *) | C.Prod (name,so,de) -> begin match l with [] -> true | he::tl -> analyse_branch context so he && analyse_instantiated_type ((Some (name,(C.Decl so)))::context) de tl end | C.Lambda _ | C.LetIn _ -> raise (AssertFailure (lazy "30"))(* due to type-checking *) | C.Appl _ -> List.fold_left (fun i x -> i && does_not_occur ~subst context n nn x) true l | C.Const _ -> raise (AssertFailure (lazy "31")) | C.MutInd _ -> List.fold_left (fun i x -> i && does_not_occur ~subst context n nn x) true l | C.MutConstruct _ -> raise (AssertFailure (lazy "32")) (*CSC: we do not consider backbones with a MutCase, Fix, Cofix *) (*CSC: in head position. *) | C.MutCase _ | C.Fix _ | C.CoFix _ -> raise (AssertFailure (lazy "33"))(* due to type-checking *) in let rec instantiate_type args consty = function [] -> true | tlhe::tltl as l -> let consty' = CicReduction.whd ~subst context consty in match args with he::tl -> begin match consty' with C.Prod (_,_,de) -> let instantiated_de = CicSubstitution.subst he de in (*CSC: siamo sicuri che non sia troppo forte? *) does_not_occur ~subst context n nn tlhe & instantiate_type tl instantiated_de tltl | _ -> (*CSC:We do not consider backbones with a MutCase, a *) (*CSC:FixPoint, a CoFixPoint and so on in head position.*) raise (AssertFailure (lazy "23")) end | [] -> analyse_instantiated_type context consty' l (* These are all the other cases *) in instantiate_type args consty tl | C.Appl ((C.CoFix (_,fl))::tl) -> List.fold_left (fun i x -> i && does_not_occur ~subst context n nn x) true tl && let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len (*CSC: Is a Decl of the ty ok or should I use Def of a Fix? *) and tys,_ = List.fold_left (fun (types,len) (n,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ) ([],0) fl in List.fold_right (fun (_,ty,bo) i -> i && does_not_occur ~subst context n nn ty && guarded_by_constructors ~subst (tys@context) n_plus_len nn_plus_len h bo args coInductiveTypeURI ) fl true | C.Appl ((C.MutCase (_,_,out,te,pl))::tl) -> List.fold_left (fun i x -> i && does_not_occur ~subst context n nn x) true tl && does_not_occur ~subst context n nn out && does_not_occur ~subst context n nn te && List.fold_right (fun x i -> i && guarded_by_constructors ~subst context n nn h x args coInductiveTypeURI ) pl true | C.Appl l -> List.fold_right (fun x i -> i && does_not_occur ~subst context n nn x) l true | C.Var (_,exp_named_subst) | C.Const (_,exp_named_subst) -> List.fold_right (fun (_,x) i -> i && does_not_occur ~subst context n nn x) exp_named_subst true | C.MutInd _ -> assert false | C.MutConstruct (_,_,_,exp_named_subst) -> List.fold_right (fun (_,x) i -> i && does_not_occur ~subst context n nn x) exp_named_subst true | C.MutCase (_,_,out,te,pl) -> does_not_occur ~subst context n nn out && does_not_occur ~subst context n nn te && List.fold_right (fun x i -> i && guarded_by_constructors ~subst context n nn h x args coInductiveTypeURI ) pl true | C.Fix (_,fl) -> let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len (*CSC: Is a Decl of the ty ok or should I use Def of a Fix? *) and tys,_ = List.fold_left (fun (types,len) (n,_,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ) ([],0) fl in List.fold_right (fun (_,_,ty,bo) i -> i && does_not_occur ~subst context n nn ty && does_not_occur ~subst (tys@context) n_plus_len nn_plus_len bo ) fl true | C.CoFix (_,fl) -> let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len (*CSC: Is a Decl of the ty ok or should I use Def of a Fix? *) and tys,_ = List.fold_left (fun (types,len) (n,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ) ([],0) fl in List.fold_right (fun (_,ty,bo) i -> i && does_not_occur ~subst context n nn ty && guarded_by_constructors ~subst (tys@context) n_plus_len nn_plus_len h bo args coInductiveTypeURI ) fl true in type_of_aux ~logger context t ugraph ;; (** wrappers which instantiate fresh loggers *) (* check_allowed_sort_elimination uri i s1 s2 This function is used outside the kernel to determine in advance whether a MutCase will be allowed or not. [uri,i] is the type of the term to match [s1] is the sort of the term to eliminate (i.e. the head of the arity of the inductive type [uri,i]) [s2] is the sort of the goal (i.e. the head of the type of the outtype of the MutCase) *) let check_allowed_sort_elimination uri i s1 s2 = fst (check_allowed_sort_elimination ~subst:[] ~metasenv:[] ~logger:(new CicLogger.logger) [] uri i true (Cic.Implicit None) (* never used *) (Cic.Sort s1) (Cic.Sort s2) CicUniv.empty_ugraph) ;; Deannotate.type_of_aux' := fun context t -> fst (type_of_aux' [] context t CicUniv.oblivion_ugraph);; *) module C = NCic module R = NCicReduction module Ref = NReference module S = NCicSubstitution module U = NCicUtils module E = NCicEnvironment let rec split_prods ~subst context n te = match (n, R.whd ~subst context te) with | (0, _) -> context,te | (n, C.Prod (name,so,ta)) when n > 0 -> split_prods ~subst ((name,(C.Decl so))::context) (n - 1) ta | (_, _) -> raise (AssertFailure (lazy "split_prods")) ;; let debruijn ?(cb=fun _ _ -> ()) uri number_of_types context = let rec aux k t = let res = match t with | C.Meta (i,(s,C.Ctx l)) -> let l1 = NCicUtils.sharing_map (aux (k-s)) l in if l1 == l then t else C.Meta (i,(s,C.Ctx l1)) | C.Meta _ -> t | C.Const (Ref.Ref (_,uri1,(Ref.Fix (no,_) | Ref.CoFix no))) | C.Const (Ref.Ref (_,uri1,Ref.Ind no)) when NUri.eq uri uri1 -> C.Rel (k + number_of_types - no) | t -> NCicUtils.map (fun _ k -> k+1) k aux t in cb t res; res in aux (List.length context) ;; let sort_of_prod ~metasenv ~subst context (name,s) (t1, t2) = let t1 = R.whd ~subst context t1 in let t2 = R.whd ~subst ((name,C.Decl s)::context) t2 in match t1, t2 with | C.Sort s1, C.Sort C.Prop -> t2 | C.Sort (C.Type u1), C.Sort (C.Type u2) -> C.Sort (C.Type (max u1 u2)) | C.Sort _,C.Sort (C.Type _) -> t2 | C.Sort (C.Type _) , C.Sort C.CProp -> t1 | C.Sort _, C.Sort C.CProp -> t2 | C.Meta _, C.Sort _ | C.Meta _, C.Meta _ | C.Sort _, C.Meta _ when U.is_closed t2 -> t2 | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "Prod: expected two sorts, found = %s, %s" (NCicPp.ppterm ~subst ~metasenv ~context t1) (NCicPp.ppterm ~subst ~metasenv ~context t2)))) ;; let eat_prods ~subst ~metasenv context he ty_he args_with_ty = let rec aux ty_he = function | [] -> ty_he | (arg, ty_arg)::tl -> match R.whd ~subst context ty_he with | C.Prod (n,s,t) -> (* prerr_endline (NCicPp.ppterm ~subst ~metasenv ~context s ^ " - Vs - " ^ NCicPp.ppterm ~subst ~metasenv ~context ty_arg); prerr_endline (NCicPp.ppterm ~subst ~metasenv ~context (S.subst ~avoid_beta_redexes:true arg t)); *) if R.are_convertible ~subst ~metasenv context ty_arg s then aux (S.subst ~avoid_beta_redexes:true arg t) tl else raise (TypeCheckerFailure (lazy (Printf.sprintf ("Appl: wrong application of %s: the parameter %s has type"^^ "\n%s\nbut it should have type \n%s\nContext:\n%s\n") (NCicPp.ppterm ~subst ~metasenv ~context he) (NCicPp.ppterm ~subst ~metasenv ~context arg) (NCicPp.ppterm ~subst ~metasenv ~context ty_arg) (NCicPp.ppterm ~subst ~metasenv ~context s) (NCicPp.ppcontext ~subst ~metasenv context)))) | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "Appl: %s is not a function, it cannot be applied" (NCicPp.ppterm ~subst ~metasenv ~context (let res = List.length tl in let eaten = List.length args_with_ty - res in (NCic.Appl (he::List.map fst (fst (HExtlib.split_nth eaten args_with_ty))))))))) in aux ty_he args_with_ty ;; (* instantiate_parameters ps (x1:T1)...(xn:Tn)C *) (* returns ((x_|ps|:T_|ps|)...(xn:Tn)C){ps_1 / x1 ; ... ; ps_|ps| / x_|ps|} *) let rec instantiate_parameters params c = match c, params with | c,[] -> c | C.Prod (_,_,ta), he::tl -> instantiate_parameters tl (S.subst he ta) | t,l -> raise (AssertFailure (lazy "1")) ;; let specialize_inductive_type ~subst context ty_term = match R.whd ~subst context ty_term with | C.Const (Ref.Ref (_,uri,Ref.Ind i) as ref) | C.Appl (C.Const (Ref.Ref (_,uri,Ref.Ind i) as ref) :: _ ) as ty -> let args = match ty with C.Appl (_::tl) -> tl | _ -> [] in let is_ind, leftno, itl, attrs, i = E.get_checked_indtys ref in let left_args,_ = HExtlib.split_nth leftno args in let itl = List.map (fun (rel, name, arity, cl) -> let arity = instantiate_parameters left_args arity in let cl = List.map (fun (rel, name, ty) -> rel, name, instantiate_parameters left_args ty) cl in rel, name, arity, cl) itl in is_ind, leftno, itl, attrs, i | _ -> assert false ;; let fix_lefts_in_constrs ~subst r_uri r_len context ty_term = let _,_,itl,_,i = specialize_inductive_type ~subst context ty_term in let _,_,_,cl = List.nth itl i in let cl = List.map (fun (_,id,ty) -> id, debruijn r_uri r_len context ty) cl in List.map (fun (_,name,arity,_) -> name, C.Decl arity) itl, cl ;; exception DoesOccur;; let does_not_occur ~subst context n nn t = let rec aux (context,n,nn as k) _ = function | C.Rel m when m > n && m <= nn -> raise DoesOccur | C.Rel m -> (try (match List.nth context (m-1) with | _,C.Def (bo,_) -> aux k () (S.lift m bo) | _ -> ()) with Failure _ -> assert false) | C.Meta (_,(_,(C.Irl 0 | C.Ctx []))) -> (* closed meta *) () | C.Meta (mno,(s,l)) -> (try let _,_,term,_ = U.lookup_subst mno subst in aux (context,n+s,nn+s) () (S.subst_meta (0,l) term) with CicUtil.Subst_not_found _ -> match l with | C.Irl len -> if not (n >= s+len || s > nn) then raise DoesOccur | C.Ctx lc -> List.iter (aux (context,n+s,nn+s) ()) lc) | t -> U.fold (fun e (ctx,n,nn) -> (e::ctx,n+1,nn+1)) k aux () t in try aux (context,n,nn) () t; true with DoesOccur -> false ;; (*CSC l'indice x dei tipi induttivi e' t.c. n < x <= nn *) (*CSC questa funzione e' simile alla are_all_occurrences_positive, ma fa *) (*CSC dei controlli leggermente diversi. Viene invocata solamente dalla *) (*CSC strictly_positive *) (*CSC definizione (giusta???) tratta dalla mail di Hugo ;-) *) let rec weakly_positive ~subst context n nn uri te = (*CSC: Che schifo! Bisogna capire meglio e trovare una soluzione ragionevole!*) let dummy = C.Sort (C.Type ~-1) in (*CSC: mettere in cicSubstitution *) let rec subst_inductive_type_with_dummy _ = function | C.Const (Ref.Ref (_,uri',Ref.Ind 0)) when NUri.eq uri' uri -> dummy | C.Appl ((C.Const (Ref.Ref (_,uri',Ref.Ind 0)))::tl) when NUri.eq uri' uri -> dummy | t -> U.map (fun _ x->x) () subst_inductive_type_with_dummy t in match R.whd context te with | C.Const (Ref.Ref (_,uri',Ref.Ind _)) | C.Appl ((C.Const (Ref.Ref (_,uri',Ref.Ind _)))::_) when NUri.eq uri' uri -> true | C.Prod (name,source,dest) when does_not_occur ~subst ((name,C.Decl source)::context) 0 1 dest -> (* dummy abstraction, so we behave as in the anonimous case *) strictly_positive ~subst context n nn (subst_inductive_type_with_dummy () source) && weakly_positive ~subst ((name,C.Decl source)::context) (n + 1) (nn + 1) uri dest | C.Prod (name,source,dest) -> does_not_occur ~subst context n nn (subst_inductive_type_with_dummy () source)&& weakly_positive ~subst ((name,C.Decl source)::context) (n + 1) (nn + 1) uri dest | _ -> raise (TypeCheckerFailure (lazy "Malformed inductive constructor type")) and strictly_positive ~subst context n nn te = match R.whd context te with | t when does_not_occur ~subst context n nn t -> true | C.Rel _ -> true | C.Prod (name,so,ta) -> does_not_occur ~subst context n nn so && strictly_positive ~subst ((name,C.Decl so)::context) (n+1) (nn+1) ta | C.Appl ((C.Rel m)::tl) when m > n && m <= nn -> List.for_all (does_not_occur ~subst context n nn) tl | C.Appl (C.Const (Ref.Ref (_,uri,Ref.Ind i) as r)::tl) -> let _,paramsno,tyl,_,i = E.get_checked_indtys r in let _,name,ity,cl = List.nth tyl i in let ok = List.length tyl = 1 in let params, arguments = HExtlib.split_nth paramsno tl in let lifted_params = List.map (S.lift 1) params in let cl = List.map (fun (_,_,te) -> instantiate_parameters lifted_params te) cl in ok && List.for_all (does_not_occur ~subst context n nn) arguments && List.for_all (weakly_positive ~subst ((name,C.Decl ity)::context) (n+1) (nn+1) uri) cl | _ -> false (* the inductive type indexes are s.t. n < x <= nn *) and are_all_occurrences_positive ~subst context uri indparamsno i n nn te = match R.whd context te with | C.Appl ((C.Rel m)::tl) as reduct when m = i -> let last = List.fold_left (fun k x -> if k = 0 then 0 else match R.whd context x with | C.Rel m when m = n - (indparamsno - k) -> k - 1 | y -> raise (TypeCheckerFailure (lazy ("Argument "^string_of_int (indparamsno - k + 1) ^ " (of " ^ string_of_int indparamsno ^ " fixed) is not homogeneous in "^ "appl:\n"^ NCicPp.ppterm ~context ~subst ~metasenv:[] reduct)))) indparamsno tl in if last = 0 then List.for_all (does_not_occur ~subst context n nn) tl else raise (TypeCheckerFailure (lazy ("Non-positive occurence in mutual inductive definition(s) [2]"^ NUri.string_of_uri uri))) | C.Rel m when m = i -> if indparamsno = 0 then true else raise (TypeCheckerFailure (lazy ("Non-positive occurence in mutual inductive definition(s) [3]"^ NUri.string_of_uri uri))) | C.Prod (name,source,dest) when does_not_occur ~subst ((name,C.Decl source)::context) 0 1 dest -> strictly_positive ~subst context n nn source && are_all_occurrences_positive ~subst ((name,C.Decl source)::context) uri indparamsno (i+1) (n + 1) (nn + 1) dest | C.Prod (name,source,dest) -> if not (does_not_occur ~subst context n nn source) then raise (TypeCheckerFailure (lazy ("Non-positive occurrence in "^ NCicPp.ppterm ~context ~metasenv:[] ~subst te))); are_all_occurrences_positive ~subst ((name,C.Decl source)::context) uri indparamsno (i+1) (n + 1) (nn + 1) dest | _ -> raise (TypeCheckerFailure (lazy ("Malformed inductive constructor type " ^ (NUri.string_of_uri uri)))) ;; exception NotGuarded of string Lazy.t;; let rec typeof ~subst ~metasenv context term = let rec typeof_aux context = fun t -> (*prerr_endline (NCicPp.ppterm ~metasenv ~subst ~context t);*) match t with | C.Rel n -> (try match List.nth context (n - 1) with | (_,C.Decl ty) -> S.lift n ty | (_,C.Def (_,ty)) -> S.lift n ty with Failure _ -> raise (TypeCheckerFailure (lazy "unbound variable"))) | C.Sort (C.Type i) -> C.Sort (C.Type (i+1)) | C.Sort s -> C.Sort (C.Type 0) | C.Implicit _ -> raise (AssertFailure (lazy "Implicit found")) | C.Meta (n,l) as t -> let canonical_ctx,ty = try let _,c,_,ty = U.lookup_subst n subst in c,ty with U.Subst_not_found _ -> try let _,_,c,ty = U.lookup_meta n metasenv in c,ty with U.Meta_not_found _ -> raise (AssertFailure (lazy (Printf.sprintf "%s not found" (NCicPp.ppterm ~subst ~metasenv ~context t)))) in check_metasenv_consistency t ~subst ~metasenv context canonical_ctx l; S.subst_meta l ty | C.Const ref -> type_of_constant ref | C.Prod (name,s,t) -> let sort1 = typeof_aux context s in let sort2 = typeof_aux ((name,(C.Decl s))::context) t in sort_of_prod ~metasenv ~subst context (name,s) (sort1,sort2) | C.Lambda (n,s,t) -> let sort = typeof_aux context s in (match R.whd ~subst context sort with | C.Meta _ | C.Sort _ -> () | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well-typed lambda-abstraction: " ^^ "the source %s should be a type; instead it is a term " ^^ "of type %s") (NCicPp.ppterm ~subst ~metasenv ~context s) (NCicPp.ppterm ~subst ~metasenv ~context sort))))); let ty = typeof_aux ((n,(C.Decl s))::context) t in C.Prod (n,s,ty) | C.LetIn (n,ty,t,bo) -> let ty_t = typeof_aux context t in let _ = typeof_aux context ty in if not (R.are_convertible ~subst ~metasenv context ty ty_t) then raise (TypeCheckerFailure (lazy (Printf.sprintf "The type of %s is %s but it is expected to be %s" (NCicPp.ppterm ~subst ~metasenv ~context t) (NCicPp.ppterm ~subst ~metasenv ~context ty_t) (NCicPp.ppterm ~subst ~metasenv ~context ty)))) else let ty_bo = typeof_aux ((n,C.Def (t,ty))::context) bo in S.subst ~avoid_beta_redexes:true t ty_bo | C.Appl (he::(_::_ as args)) -> let ty_he = typeof_aux context he in let args_with_ty = List.map (fun t -> t, typeof_aux context t) args in (* prerr_endline ("HEAD: " ^ NCicPp.ppterm ~subst ~metasenv ~context ty_he); prerr_endline ("TARGS: " ^ String.concat " | " (List.map (NCicPp.ppterm ~subst ~metasenv ~context) (List.map snd args_with_ty))); prerr_endline ("ARGS: " ^ String.concat " | " (List.map (NCicPp.ppterm ~subst ~metasenv ~context) (List.map fst args_with_ty))); *) eat_prods ~subst ~metasenv context he ty_he args_with_ty | C.Appl _ -> raise (AssertFailure (lazy "Appl of length < 2")) | C.Match (Ref.Ref (_,_,Ref.Ind tyno) as r,outtype,term,pl) -> let outsort = typeof_aux context outtype in let inductive,leftno,itl,_,_ = E.get_checked_indtys r in let constructorsno = let _,_,_,cl = List.nth itl tyno in List.length cl in let parameters, arguments = let ty = R.whd ~subst context (typeof_aux context term) in let r',tl = match ty with C.Const (Ref.Ref (_,_,Ref.Ind _) as r') -> r',[] | C.Appl (C.Const (Ref.Ref (_,_,Ref.Ind _) as r') :: tl) -> r',tl | _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "Case analysis: analysed term %s is not an inductive one" (NCicPp.ppterm ~subst ~metasenv ~context term)))) in if not (Ref.eq r r') then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Case analysys: analysed term type is %s, but is expected " ^^ "to be (an application of) %s") (NCicPp.ppterm ~subst ~metasenv ~context ty) (NCicPp.ppterm ~subst ~metasenv ~context (C.Const r'))))) else try HExtlib.split_nth leftno tl with Failure _ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "%s is partially applied" (NCicPp.ppterm ~subst ~metasenv ~context ty)))) in (* let's control if the sort elimination is allowed: [(I q1 ... qr)|B] *) let sort_of_ind_type = if parameters = [] then C.Const r else C.Appl ((C.Const r)::parameters) in let type_of_sort_of_ind_ty = typeof_aux context sort_of_ind_type in check_allowed_sort_elimination ~subst ~metasenv r context sort_of_ind_type type_of_sort_of_ind_ty outsort; (* let's check if the type of branches are right *) if List.length pl <> constructorsno then raise (TypeCheckerFailure (lazy ("Wrong number of cases in a match"))); let j,branches_ok,p_ty, exp_p_ty = List.fold_left (fun (j,b,old_p_ty,old_exp_p_ty) p -> if b then let cons = let cons = Ref.mk_constructor j r in if parameters = [] then C.Const cons else C.Appl (C.Const cons::parameters) in let ty_p = typeof_aux context p in let ty_cons = typeof_aux context cons in let ty_branch = type_of_branch ~subst context leftno outtype cons ty_cons 0 in j+1, R.are_convertible ~subst ~metasenv context ty_p ty_branch, ty_p, ty_branch else j,false,old_p_ty,old_exp_p_ty ) (1,true,C.Sort C.Prop,C.Sort C.Prop) pl in if not branches_ok then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Branch for constructor %s :=\n%s\n"^^ "has type %s\nnot convertible with %s") (NCicPp.ppterm ~subst ~metasenv ~context (C.Const (Ref.mk_constructor (j-1) r))) (NCicPp.ppterm ~metasenv ~subst ~context (List.nth pl (j-2))) (NCicPp.ppterm ~metasenv ~subst ~context p_ty) (NCicPp.ppterm ~metasenv ~subst ~context exp_p_ty)))); let res = outtype::arguments@[term] in R.head_beta_reduce (C.Appl res) | C.Match _ -> assert false and type_of_branch ~subst context leftno outty cons tycons liftno = match R.whd ~subst context tycons with | C.Const (Ref.Ref (_,_,Ref.Ind _)) -> C.Appl [S.lift liftno outty ; cons] | C.Appl (C.Const (Ref.Ref (_,_,Ref.Ind _))::tl) -> let _,arguments = HExtlib.split_nth leftno tl in C.Appl (S.lift liftno outty::arguments@[cons]) | C.Prod (name,so,de) -> let cons = match S.lift 1 cons with | C.Appl l -> C.Appl (l@[C.Rel 1]) | t -> C.Appl [t ; C.Rel 1] in C.Prod (name,so, type_of_branch ~subst ((name,(C.Decl so))::context) leftno outty cons de (liftno+1)) | _ -> raise (AssertFailure (lazy "type_of_branch")) (* check_metasenv_consistency checks that the "canonical" context of a metavariable is consitent - up to relocation via the relocation list l - with the actual context *) and check_metasenv_consistency ~subst ~metasenv term context canonical_context l = match l with | shift, NCic.Irl n -> let context = snd (HExtlib.split_nth shift context) in let rec compare = function | 0,_,[] -> () | 0,_,_::_ | _,_,[] -> raise (AssertFailure (lazy (Printf.sprintf "Local and canonical context %s have different lengths" (NCicPp.ppterm ~subst ~context ~metasenv term)))) | m,[],_::_ -> raise (TypeCheckerFailure (lazy (Printf.sprintf "Unbound variable -%d in %s" m (NCicPp.ppterm ~subst ~metasenv ~context term)))) | m,t::tl,ct::ctl -> (match t,ct with (_,C.Decl t1), (_,C.Decl t2) | (_,C.Def (t1,_)), (_,C.Def (t2,_)) | (_,C.Def (_,t1)), (_,C.Decl t2) -> if not (R.are_convertible ~subst ~metasenv tl t1 t2) then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context for %s: " ^^ "%s expected, which is not convertible with %s") (NCicPp.ppterm ~subst ~metasenv ~context term) (NCicPp.ppterm ~subst ~metasenv ~context t2) (NCicPp.ppterm ~subst ~metasenv ~context t1)))) | _,_ -> raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context for %s: " ^^ "a definition expected, but a declaration found") (NCicPp.ppterm ~subst ~metasenv ~context term))))); compare (m - 1,tl,ctl) in compare (n,context,canonical_context) | shift, lc_kind -> (* we avoid useless lifting by shortening the context*) let l,context = (0,lc_kind), snd (HExtlib.split_nth shift context) in let lifted_canonical_context = let rec lift_metas i = function | [] -> [] | (n,C.Decl t)::tl -> (n,C.Decl (S.subst_meta l (S.lift i t)))::(lift_metas (i+1) tl) | (n,C.Def (t,ty))::tl -> (n,C.Def ((S.subst_meta l (S.lift i t)), S.subst_meta l (S.lift i ty)))::(lift_metas (i+1) tl) in lift_metas 1 canonical_context in let l = U.expand_local_context lc_kind in try List.iter2 (fun t ct -> match (t,ct) with | t, (_,C.Def (ct,_)) -> (*CSC: the following optimization is to avoid a possibly expensive reduction that can be easily avoided and that is quite frequent. However, this is better handled using levels to control reduction *) let optimized_t = match t with | C.Rel n -> (try match List.nth context (n - 1) with | (_,C.Def (te,_)) -> S.lift n te | _ -> t with Failure _ -> t) | _ -> t in if not (R.are_convertible ~subst ~metasenv context optimized_t ct) then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context: " ^^ "expected a term convertible with %s, found %s") (NCicPp.ppterm ~subst ~metasenv ~context ct) (NCicPp.ppterm ~subst ~metasenv ~context t)))) | t, (_,C.Decl ct) -> let type_t = typeof_aux context t in if not (R.are_convertible ~subst ~metasenv context type_t ct) then raise (TypeCheckerFailure (lazy (Printf.sprintf ("Not well typed metavariable local context: "^^ "expected a term of type %s, found %s of type %s") (NCicPp.ppterm ~subst ~metasenv ~context ct) (NCicPp.ppterm ~subst ~metasenv ~context t) (NCicPp.ppterm ~subst ~metasenv ~context type_t)))) ) l lifted_canonical_context with Invalid_argument _ -> raise (AssertFailure (lazy (Printf.sprintf "Local and canonical context %s have different lengths" (NCicPp.ppterm ~subst ~metasenv ~context term)))) and is_non_informative context paramsno c = let rec aux context c = match R.whd context c with | C.Prod (n,so,de) -> let s = typeof_aux context so in s = C.Sort C.Prop && aux ((n,(C.Decl so))::context) de | _ -> true in let context',dx = split_prods ~subst:[] context paramsno c in aux context' dx and check_allowed_sort_elimination ~subst ~metasenv r = let mkapp he arg = match he with | C.Appl l -> C.Appl (l @ [arg]) | t -> C.Appl [t;arg] in let rec aux context ind arity1 arity2 = let arity1 = R.whd ~subst context arity1 in let arity2 = R.whd ~subst context arity2 in match arity1,arity2 with | C.Prod (name,so1,de1), C.Prod (_,so2,de2) -> if not (R.are_convertible ~subst ~metasenv context so1 so2) then raise (TypeCheckerFailure (lazy (Printf.sprintf "In outtype: expected %s, found %s" (NCicPp.ppterm ~subst ~metasenv ~context so1) (NCicPp.ppterm ~subst ~metasenv ~context so2) ))); aux ((name, C.Decl so1)::context) (mkapp (S.lift 1 ind) (C.Rel 1)) de1 de2 | C.Sort _, C.Prod (name,so,ta) -> if not (R.are_convertible ~subst ~metasenv context so ind) then raise (TypeCheckerFailure (lazy (Printf.sprintf "In outtype: expected %s, found %s" (NCicPp.ppterm ~subst ~metasenv ~context ind) (NCicPp.ppterm ~subst ~metasenv ~context so) ))); (match arity1,ta with | (C.Sort (C.CProp | C.Type _), C.Sort _) | (C.Sort C.Prop, C.Sort C.Prop) -> () | (C.Sort C.Prop, C.Sort (C.CProp | C.Type _)) -> (* TODO: we should pass all these parameters since we * have them already *) let inductive,leftno,itl,_,i = E.get_checked_indtys r in let itl_len = List.length itl in let _,name,ty,cl = List.nth itl i in let cl_len = List.length cl in (* is it a singleton or empty non recursive and non informative definition? *) if not (cl_len = 0 || (itl_len = 1 && cl_len = 1 && is_non_informative [name,C.Decl ty] leftno (let _,_,x = List.nth cl 0 in x))) then raise (TypeCheckerFailure (lazy ("Sort elimination not allowed"))); | _,_ -> ()) | _,_ -> () in aux in typeof_aux context term and check_mutual_inductive_defs uri ~metasenv ~subst is_ind leftno tyl = (* let's check if the arity of the inductive types are well formed *) List.iter (fun (_,_,x,_) -> ignore (typeof ~subst ~metasenv [] x)) tyl; (* let's check if the types of the inductive constructors are well formed. *) let len = List.length tyl in let tys = List.rev (List.map (fun (_,n,ty,_) -> (n,(C.Decl ty))) tyl) in ignore (List.fold_right (fun (_,_,_,cl) i -> List.iter (fun (_,name,te) -> let debruijnedte = debruijn uri len [] te in ignore (typeof ~subst ~metasenv tys debruijnedte); (* let's check also the positivity conditions *) if not (are_all_occurrences_positive ~subst tys uri leftno i 0 len debruijnedte) then raise (TypeCheckerFailure (lazy ("Non positive occurence in "^NUri.string_of_uri uri)))) cl; i + 1) tyl 1) and eat_lambdas ~subst ~metasenv context n te = match (n, R.whd ~subst context te) with | (0, _) -> (te, context) | (n, C.Lambda (name,so,ta)) when n > 0 -> eat_lambdas ~subst ~metasenv ((name,(C.Decl so))::context) (n - 1) ta | (n, te) -> raise (AssertFailure (lazy (Printf.sprintf "eat_lambdas (%d, %s)" n (NCicPp.ppterm ~subst ~metasenv ~context te)))) and eat_or_subst_lambdas ~subst ~metasenv n te to_be_subst args (context, recfuns, x as k) = match n, R.whd ~subst context te, to_be_subst, args with | (n, C.Lambda (name,so,ta),true::to_be_subst,arg::args) when n > 0 -> eat_or_subst_lambdas ~subst ~metasenv (n - 1) (S.subst arg ta) to_be_subst args k | (n, C.Lambda (name,so,ta),false::to_be_subst,arg::args) when n > 0 -> eat_or_subst_lambdas ~subst ~metasenv (n - 1) ta to_be_subst args (shift_k (name,(C.Decl so)) k) | (_, te, _, _) -> te, k and guarded_by_destructors r_uri r_len ~subst ~metasenv context recfuns t = let recursor f k t = NCicUtils.fold shift_k k (fun k () -> f k) () t in let rec aux (context, recfuns, x as k) t = let t = R.whd ~delta:max_int ~subst context t in (* prerr_endline ("GB:\n" ^ NCicPp.ppcontext ~subst ~metasenv context^ NCicPp.ppterm ~metasenv ~subst ~context t^ string_of_recfuns ~subst ~metasenv ~context recfuns); *) try match t with | C.Rel m as t when is_dangerous m recfuns -> raise (NotGuarded (lazy (NCicPp.ppterm ~subst ~metasenv ~context t ^ " is a partial application of a fix"))) | C.Appl ((C.Rel m)::tl) as t when is_dangerous m recfuns -> let rec_no = get_recno m recfuns in if not (List.length tl > rec_no) then raise (NotGuarded (lazy (NCicPp.ppterm ~context ~subst ~metasenv t ^ " is a partial application of a fix"))) else let rec_arg = List.nth tl rec_no in if not (is_really_smaller r_uri r_len ~subst ~metasenv k rec_arg) then raise (NotGuarded (lazy (Printf.sprintf ("Recursive call %s, %s is not" ^^ " smaller.\ncontext:\n%s") (NCicPp.ppterm ~context ~subst ~metasenv t) (NCicPp.ppterm ~context ~subst ~metasenv rec_arg) (NCicPp.ppcontext ~subst ~metasenv context)))); List.iter (aux k) tl | C.Appl ((C.Rel m)::tl) when is_unfolded m recfuns -> let fixed_args = get_fixed_args m recfuns in list_iter_default2 (fun x b -> if not b then aux k x) tl false fixed_args | C.Rel m -> (match List.nth context (m-1) with | _,C.Decl _ -> () | _,C.Def (bo,_) -> aux k (S.lift m bo)) | C.Meta _ -> () | C.Appl (C.Const ((Ref.Ref (_,uri,Ref.Fix (i,recno))) as r)::args) -> if List.exists (fun t -> try aux k t;false with NotGuarded _ -> true) args then let fl,_,_ = E.get_checked_fixes r in let ctx_tys, bos = List.split (List.map (fun (_,name,_,ty,bo) -> (name, C.Decl ty), bo) fl) in let fl_len = List.length fl in let bos = List.map (debruijn uri fl_len context) bos in let j = List.fold_left min max_int (List.map (fun (_,_,i,_,_)->i) fl) in let ctx_len = List.length context in (* we may look for fixed params not only up to j ... *) let fa = fixed_args bos j ctx_len (ctx_len + fl_len) in list_iter_default2 (fun x b -> if not b then aux k x) args false fa; let context = context@ctx_tys in let ctx_len = List.length context in let extra_recfuns = HExtlib.list_mapi (fun _ i -> ctx_len - i, UnfFix fa) ctx_tys in let new_k = context, extra_recfuns@recfuns, x in let bos_and_ks = HExtlib.list_mapi (fun bo fno -> let bo_and_k = eat_or_subst_lambdas ~subst ~metasenv j bo fa args new_k in if fno = i && List.length args > recno && (*case where the recursive argument is already really_smaller *) is_really_smaller r_uri r_len ~subst ~metasenv k (List.nth args recno) then let bo,(context, _, _ as new_k) = bo_and_k in let bo, context' = eat_lambdas ~subst ~metasenv context (recno + 1 - j) bo in let new_context_part,_ = HExtlib.split_nth (List.length context' - List.length context) context' in let k = List.fold_right shift_k new_context_part new_k in let context, recfuns, x = k in let k = context, (1,Safe)::recfuns, x in bo,k else bo_and_k ) bos in List.iter (fun (bo,k) -> aux k bo) bos_and_ks | C.Match (Ref.Ref (_,uri,_) as ref,outtype,term,pl) as t -> (match R.whd ~subst context term with | C.Rel m | C.Appl (C.Rel m :: _ ) as t when is_safe m recfuns || m = x -> (* TODO: add CoInd to references so that this call is useless *) let isinductive, _, _, _, _ = E.get_checked_indtys ref in if not isinductive then recursor aux k t else let ty = typeof ~subst ~metasenv context term in let itl_ctx,dcl = fix_lefts_in_constrs ~subst r_uri r_len context ty in let args = match t with C.Appl (_::tl) -> tl | _ -> [] in let dc_ctx = context @ itl_ctx in let start, stop = List.length context, List.length context + r_len in aux k outtype; List.iter (aux k) args; List.iter2 (fun p (_,dc) -> let rl = recursive_args ~subst ~metasenv dc_ctx start stop dc in let p, k = get_new_safes ~subst k p rl in aux k p) pl dcl | _ -> recursor aux k t) | t -> recursor aux k t with NotGuarded _ as exc -> let t' = R.whd ~delta:0 ~subst context t in if t = t' then raise exc else aux k t' in try aux (context, recfuns, 1) t with NotGuarded s -> raise (TypeCheckerFailure s) (* | C.Fix (_, fl) -> let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len and x_plus_len = x + len and tys,_ = List.fold_left (fun (types,len) (n,_,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ) ([],0) fl and safes' = List.map (fun x -> x + len) safes in List.fold_right (fun (_,_,ty,bo) i -> i && guarded_by_destructors ~subst context n nn kl x_plus_len safes' ty && guarded_by_destructors ~subst (tys@context) n_plus_len nn_plus_len kl x_plus_len safes' bo ) fl true | C.CoFix (_, fl) -> let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len and x_plus_len = x + len and tys,_ = List.fold_left (fun (types,len) (n,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ) ([],0) fl and safes' = List.map (fun x -> x + len) safes in List.fold_right (fun (_,ty,bo) i -> i && guarded_by_destructors ~subst context n nn kl x_plus_len safes' ty && guarded_by_destructors ~subst (tys@context) n_plus_len nn_plus_len kl x_plus_len safes' bo ) fl true *) and guarded_by_constructors ~subst ~metasenv _ _ _ _ _ _ _ = true and recursive_args ~subst ~metasenv context n nn te = match R.whd context te with | C.Rel _ | C.Appl _ | C.Const _ -> [] | C.Prod (name,so,de) -> (not (does_not_occur ~subst context n nn so)) :: (recursive_args ~subst ~metasenv ((name,(C.Decl so))::context) (n+1) (nn + 1) de) | t -> raise (AssertFailure (lazy ("recursive_args:" ^ NCicPp.ppterm ~subst ~metasenv ~context:[] t))) and get_new_safes ~subst (context, recfuns, x as k) p rl = match R.whd ~subst context p, rl with | C.Lambda (name,so,ta), b::tl -> let recfuns = (if b then [0,Safe] else []) @ recfuns in get_new_safes ~subst (shift_k (name,(C.Decl so)) (context, recfuns, x)) ta tl | C.Meta _ as e, _ | e, [] -> e, k | _ -> raise (AssertFailure (lazy "Ill formed pattern")) and split_prods ~subst context n te = match n, R.whd ~subst context te with | 0, _ -> context,te | n, C.Prod (name,so,ta) when n > 0 -> split_prods ~subst ((name,(C.Decl so))::context) (n - 1) ta | _ -> raise (AssertFailure (lazy "split_prods")) and is_really_smaller r_uri r_len ~subst ~metasenv (context, recfuns, x as k) te = match R.whd ~subst context te with | C.Rel m when is_safe m recfuns -> true | C.Lambda (name, s, t) -> is_really_smaller r_uri r_len ~subst ~metasenv (shift_k (name,C.Decl s) k) t | C.Appl (he::_) -> is_really_smaller r_uri r_len ~subst ~metasenv k he | C.Appl _ | C.Rel _ | C.Const (Ref.Ref (_,_,Ref.Con _)) -> false | C.Const (Ref.Ref (_,_,Ref.Fix _)) -> assert false (*| C.Fix (_, fl) -> let len = List.length fl in let n_plus_len = n + len and nn_plus_len = nn + len and x_plus_len = x + len and tys,_ = List.fold_left (fun (types,len) (n,_,ty,_) -> (Some (C.Name n,(C.Decl (CicSubstitution.lift len ty)))::types, len+1) ) ([],0) fl and safes' = List.map (fun x -> x + len) safes in List.fold_right (fun (_,_,ty,bo) i -> i && is_really_smaller ~subst (tys@context) n_plus_len nn_plus_len kl x_plus_len safes' bo ) fl true*) | C.Meta _ -> true | C.Match (Ref.Ref (_,uri,_) as ref,outtype,term,pl) -> (match term with | C.Rel m | C.Appl (C.Rel m :: _ ) when is_safe m recfuns || m = x -> (* TODO: add CoInd to references so that this call is useless *) let isinductive, _, _, _, _ = E.get_checked_indtys ref in if not isinductive then List.for_all (is_really_smaller r_uri r_len ~subst ~metasenv k) pl else let ty = typeof ~subst ~metasenv context term in let itl_ctx,dcl= fix_lefts_in_constrs ~subst r_uri r_len context ty in let start, stop = List.length context, List.length context + r_len in let dc_ctx = context @ itl_ctx in List.for_all2 (fun p (_,dc) -> let rl = recursive_args ~subst ~metasenv dc_ctx start stop dc in let e, k = get_new_safes ~subst k p rl in is_really_smaller r_uri r_len ~subst ~metasenv k e) pl dcl | _ -> List.for_all (is_really_smaller r_uri r_len ~subst ~metasenv k) pl) | _ -> assert false and returns_a_coinductive ~subst context ty = match R.whd ~subst context ty with | C.Const (Ref.Ref (_,uri,Ref.Ind _) as ref) | C.Appl (C.Const (Ref.Ref (_,uri,Ref.Ind _) as ref)::_) -> let isinductive, _, _, _, _ = E.get_checked_indtys ref in if isinductive then None else (Some uri) | C.Prod (n,so,de) -> returns_a_coinductive ~subst ((n,C.Decl so)::context) de | _ -> None and type_of_constant ((Ref.Ref (_,uri,_)) as ref) = let cobj = match E.get_obj uri with | true, cobj -> cobj | false, uobj -> !logger (`Start_type_checking uri); check_obj_well_typed uobj; E.add_obj uobj; !logger (`Type_checking_completed uri); uobj in match cobj, ref with | (_,_,_,_,C.Inductive (_,_,tl,_)), Ref.Ref (_,_,Ref.Ind i) -> let _,_,arity,_ = List.nth tl i in arity | (_,_,_,_,C.Inductive (_,_,tl,_)), Ref.Ref (_,_,Ref.Con (i,j)) -> let _,_,_,cl = List.nth tl i in let _,_,arity = List.nth cl (j-1) in arity | (_,_,_,_,C.Fixpoint (_,fl,_)), Ref.Ref (_,_,(Ref.Fix (i,_)|Ref.CoFix i)) -> let _,_,_,arity,_ = List.nth fl i in arity | (_,_,_,_,C.Constant (_,_,_,ty,_)), Ref.Ref (_,_,(Ref.Def |Ref.Decl)) -> ty | _ -> raise (AssertFailure (lazy "type_of_constant: environment/reference")) and check_obj_well_typed (uri,height,metasenv,subst,kind) = (* CSC: here we should typecheck the metasenv and the subst *) assert (metasenv = [] && subst = []); match kind with | C.Constant (_,_,Some te,ty,_) -> let _ = typeof ~subst ~metasenv [] ty in let ty_te = typeof ~subst ~metasenv [] te in if not (R.are_convertible ~subst ~metasenv [] ty_te ty) then raise (TypeCheckerFailure (lazy (Printf.sprintf ( "the type of the body is not convertible with the declared one.\n"^^ "inferred type:\n%s\nexpected type:\n%s") (NCicPp.ppterm ~subst ~metasenv ~context:[] ty_te) (NCicPp.ppterm ~subst ~metasenv ~context:[] ty)))) | C.Constant (_,_,None,ty,_) -> ignore (typeof ~subst ~metasenv [] ty) | C.Inductive (is_ind, leftno, tyl, _) -> check_mutual_inductive_defs uri ~metasenv ~subst is_ind leftno tyl | C.Fixpoint (inductive,fl,_) -> let types, kl, len = List.fold_left (fun (types,kl,len) (_,name,k,ty,_) -> let _ = typeof ~subst ~metasenv [] ty in ((name,(C.Decl (S.lift len ty)))::types, k::kl,len+1) ) ([],[],0) fl in let dfl, kl = List.split (List.map2 (fun (_,_,_,_,bo) rno -> let dbo = debruijn uri len [] bo in dbo, Evil rno) fl kl) in List.iter2 (fun (_,name,x,ty,_) bo -> let ty_bo = typeof ~subst ~metasenv types bo in if not (R.are_convertible ~subst ~metasenv types ty_bo (S.lift len ty)) then raise (TypeCheckerFailure (lazy ("(Co)Fix: ill-typed bodies"))) else if inductive then begin let m, context = eat_lambdas ~subst ~metasenv types (x + 1) bo in let r_uri, r_len = let he = match List.hd context with _,C.Decl t -> t | _ -> assert false in match R.whd ~subst (List.tl context) he with | C.Const (Ref.Ref (_,uri,Ref.Ind _) as ref) | C.Appl (C.Const (Ref.Ref (_,uri,Ref.Ind _) as ref) :: _) -> let _,_,itl,_,_ = E.get_checked_indtys ref in uri, List.length itl | _ -> assert false in (* guarded by destructors conditions D{f,k,x,M} *) let rec enum_from k = function [] -> [] | v::tl -> (k,v)::enum_from (k+1) tl in guarded_by_destructors r_uri r_len ~subst ~metasenv context (enum_from (x+2) kl) m end else match returns_a_coinductive ~subst [] ty with | None -> raise (TypeCheckerFailure (lazy "CoFix: does not return a coinductive type")) | Some uri -> (* guarded by constructors conditions C{f,M} *) if not (guarded_by_constructors ~subst ~metasenv types 0 len false bo [] uri) then raise (TypeCheckerFailure (lazy "CoFix: not guarded by constructors")) ) fl dfl let typecheck_obj = check_obj_well_typed;; (* EOF *)