(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) open AutoTypes;; open AutoCache;; let debug = false;; let debug_print s = if debug then prerr_endline (Lazy.force s);; type auto_params = Cic.term list * (string * string) list let elems = ref [] ;; (* closing a term w.r.t. its metavariables very naif version: it does not take dependencies properly into account *) let naif_closure ?(prefix_name="xxx_") t metasenv context = let metasenv = ProofEngineHelpers.sort_metasenv metasenv in let n = List.length metasenv in let what = List.map (fun (i,cc,ty) -> Cic.Meta(i,[])) metasenv in let _,with_what = List.fold_left (fun (i,acc) (_,cc,ty) -> (i-1,Cic.Rel i::acc)) (n,[]) metasenv in let t = CicSubstitution.lift n t in let body = ProofEngineReduction.replace_lifting ~equality:(fun c t1 t2 -> match t1,t2 with | Cic.Meta(i,_),Cic.Meta(j,_) -> i = j | _ -> false) ~context ~what ~with_what ~where:t in let _, t = List.fold_left (fun (n,t) (_,cc,ty) -> n-1, Cic.Lambda(Cic.Name (prefix_name^string_of_int n), CicSubstitution.lift n ty,t)) (n-1,body) metasenv in t ;; let lambda_close ?prefix_name t menv ctx = let t = naif_closure ?prefix_name t menv ctx in List.fold_left (fun (t,i) -> function | None -> CicSubstitution.subst (Cic.Implicit None) t,i (* delift *) | Some (name, Cic.Decl ty) -> Cic.Lambda (name, ty, t),i+1 | Some (name, Cic.Def (bo, ty)) -> Cic.LetIn (name, bo, ty, t),i+1) (t,List.length menv) ctx ;; (* functions for retrieving theorems *) exception FillingFailure of AutoCache.cache * int let rec unfold context = function | Cic.Prod(name,s,t) -> let t' = unfold ((Some (name,Cic.Decl s))::context) t in Cic.Prod(name,s,t') | t -> ProofEngineReduction.unfold context t let find_library_theorems dbd proof goal = let univ = MetadataQuery.universe_of_goal ~dbd false proof goal in let terms = List.map CicUtil.term_of_uri univ in List.map (fun t -> (t,fst(CicTypeChecker.type_of_aux' [] [] t CicUniv.oblivion_ugraph))) terms let find_context_theorems context metasenv = let l,_ = List.fold_left (fun (res,i) ctxentry -> match ctxentry with | Some (_,Cic.Decl t) -> (Cic.Rel i, CicSubstitution.lift i t)::res,i+1 | Some (_,Cic.Def (_,t)) -> (Cic.Rel i, CicSubstitution.lift i t)::res,i+1 | None -> res,i+1) ([],1) context in l let rec is_an_equality = function | Cic.Appl [Cic.MutInd (uri, _, _); _; _; _] when (LibraryObjects.is_eq_URI uri) -> true | Cic.Prod (_, _, t) -> is_an_equality t | _ -> false ;; let partition_equalities = List.partition (fun (_,ty) -> is_an_equality ty) let default_auto maxm _ _ cache _ _ _ _ = [],cache,maxm ;; let is_unit_equation context metasenv oldnewmeta term = let head, metasenv, args, newmeta = TermUtil.saturate_term oldnewmeta metasenv context term 0 in let propositional_args = HExtlib.filter_map (function | Cic.Meta(i,_) -> let _,_,mt = CicUtil.lookup_meta i metasenv in let sort,u = CicTypeChecker.type_of_aux' metasenv context mt CicUniv.oblivion_ugraph in let b, _ = CicReduction.are_convertible ~metasenv context sort (Cic.Sort Cic.Prop) u in if b then Some i else None | _ -> assert false) args in if propositional_args = [] then let newmetas = List.filter (fun (i,_,_) -> i >= oldnewmeta) metasenv in Some (args,metasenv,newmetas,head,newmeta) else None ;; let get_candidates universe cache t = let candidates= (Universe.get_candidates universe t)@(AutoCache.get_candidates cache t) in let debug_msg = (lazy ("candidates for " ^ (CicPp.ppterm t) ^ " = " ^ (String.concat "\n" (List.map CicPp.ppterm candidates)))) in debug_print debug_msg; candidates ;; let only signature context metasenv t = try let ty,_ = CicTypeChecker.type_of_aux' metasenv context t CicUniv.oblivion_ugraph in let consts = MetadataConstraints.constants_of ty in let b = MetadataConstraints.UriManagerSet.subset consts signature in if b then b else let ty' = unfold context ty in let consts' = MetadataConstraints.constants_of ty' in MetadataConstraints.UriManagerSet.subset consts' signature with | CicTypeChecker.TypeCheckerFailure _ -> assert false | ProofEngineTypes.Fail _ -> false (* unfold may fail *) ;; let not_default_eq_term t = try let uri = CicUtil.uri_of_term t in not (LibraryObjects.in_eq_URIs uri) with Invalid_argument _ -> true let retrieve_equations dont_filter signature universe cache context metasenv = match LibraryObjects.eq_URI() with | None -> [] | Some eq_uri -> let eq_uri = UriManager.strip_xpointer eq_uri in let fake= Cic.Meta(-1,[]) in let fake_eq = Cic.Appl [Cic.MutInd (eq_uri,0, []);fake;fake;fake] in let candidates = get_candidates universe cache fake_eq in if dont_filter then candidates else let candidates = List.filter not_default_eq_term candidates in List.filter (only signature context metasenv) candidates let build_equality bag head args proof newmetas maxmeta = match head with | Cic.Appl [Cic.MutInd (uri, _, _); ty; t1; t2] -> let p = if args = [] then proof else Cic.Appl (proof::args) in let o = !Utils.compare_terms t1 t2 in let stat = (ty,t1,t2,o) in (* let w = compute_equality_weight stat in *) let w = 0 in let proof = Equality.Exact p in let e = Equality.mk_equality bag (w, proof, stat, newmetas) in (* to clean the local context of metas *) Equality.fix_metas bag maxmeta e | _ -> assert false ;; let partition_unit_equalities context metasenv newmeta bag equations = List.fold_left (fun (units,other,maxmeta)(t,ty) -> if not (CicUtil.is_meta_closed t && CicUtil.is_meta_closed ty) then let _ = HLog.warn ("Skipping " ^ CicMetaSubst.ppterm_in_context ~metasenv [] t context ^ " since it is not meta closed") in units,(t,ty)::other,maxmeta else match is_unit_equation context metasenv maxmeta ty with | Some (args,metasenv,newmetas,head,newmeta') -> let maxmeta,equality = build_equality bag head args t newmetas newmeta' in equality::units,other,maxmeta | None -> units,(t,ty)::other,maxmeta) ([],[],newmeta) equations let empty_tables = (Saturation.make_active [], Saturation.make_passive [], Equality.mk_equality_bag) let init_cache_and_tables ?dbd use_library paramod use_context dont_filter universe (proof, goal) = (* the local cache in initially empty *) let cache = AutoCache.cache_empty in let _, metasenv, _subst,_, _, _ = proof in let signature = MetadataQuery.signature_of metasenv goal in let newmeta = CicMkImplicit.new_meta metasenv [] in let _,context,_ = CicUtil.lookup_meta goal metasenv in let ct = if use_context then find_context_theorems context metasenv else [] in debug_print (lazy ("ho trovato nel contesto " ^ (string_of_int (List.length ct)))); let lt = match use_library, dbd with | true, Some dbd -> find_library_theorems dbd metasenv goal | _ -> [] in debug_print (lazy ("ho trovato nella libreria " ^ (string_of_int (List.length lt)))); let cache = cache_add_list cache context (ct@lt) in let equations = retrieve_equations dont_filter signature universe cache context metasenv in debug_print (lazy ("ho trovato equazioni n. "^(string_of_int (List.length equations)))); let eqs_and_types = HExtlib.filter_map (fun t -> let ty,_ = CicTypeChecker.type_of_aux' metasenv context t CicUniv.oblivion_ugraph in (* retrieve_equations could also return flexible terms *) if is_an_equality ty then Some(t,ty) else try let ty' = unfold context ty in if is_an_equality ty' then Some(t,ty') else None with ProofEngineTypes.Fail _ -> None) equations in let bag = Equality.mk_equality_bag () in let units, other_equalities, newmeta = partition_unit_equalities context metasenv newmeta bag eqs_and_types in (* SIMPLIFICATION STEP let equalities = let env = (metasenv, context, CicUniv.oblivion_ugraph) in let eq_uri = HExtlib.unopt (LibraryObjects.eq_URI()) in Saturation.simplify_equalities bag eq_uri env units in *) let passive = Saturation.make_passive units in let no = List.length units in let active = Saturation.make_active [] in let active,passive,newmeta = if paramod then active,passive,newmeta else Saturation.pump_actives context bag newmeta active passive (no+1) infinity in (active,passive,bag),cache,newmeta let fill_hypothesis context metasenv oldnewmeta term tables (universe:Universe.universe) cache auto fast = let head, metasenv, args, newmeta = TermUtil.saturate_term oldnewmeta metasenv context term 0 in let propositional_args = HExtlib.filter_map (function | Cic.Meta(i,_) -> let _,_,mt = CicUtil.lookup_meta i metasenv in let sort,u = CicTypeChecker.type_of_aux' metasenv context mt CicUniv.oblivion_ugraph in let b, _ = CicReduction.are_convertible ~metasenv context sort (Cic.Sort Cic.Prop) u in if b then Some i else None | _ -> assert false) args in let results,cache,newmeta = if propositional_args = [] then let newmetas = List.filter (fun (i,_,_) -> i >= oldnewmeta) metasenv in [args,metasenv,newmetas,head,newmeta],cache,newmeta else (* let proof = None,metasenv,term,term (* term non e' significativo *) in *) let flags = if fast then {AutoTypes.default_flags() with AutoTypes.timeout = Unix.gettimeofday() +. 1.0; maxwidth = 2;maxdepth = 2; use_paramod=true;use_only_paramod=false} else {AutoTypes.default_flags() with AutoTypes.timeout = Unix.gettimeofday() +. 1.0; maxwidth = 2;maxdepth = 4; use_paramod=true;use_only_paramod=false} in match auto newmeta tables universe cache context metasenv propositional_args flags with | [],cache,newmeta -> raise (FillingFailure (cache,newmeta)) | substs,cache,newmeta -> List.map (fun subst -> let metasenv = CicMetaSubst.apply_subst_metasenv subst metasenv in let head = CicMetaSubst.apply_subst subst head in let newmetas = List.filter (fun (i,_,_) ->i >= oldnewmeta) metasenv in let args = List.map (CicMetaSubst.apply_subst subst) args in let newm = CicMkImplicit.new_meta metasenv subst in args,metasenv,newmetas,head,max newm newmeta) substs, cache, newmeta in results,cache,newmeta let build_equalities auto context metasenv tables universe cache newmeta equations = List.fold_left (fun (facts,cache,newmeta) (t,ty) -> (* in any case we add the equation to the cache *) let cache = AutoCache.cache_add_list cache context [(t,ty)] in try let saturated,cache,newmeta = fill_hypothesis context metasenv newmeta ty tables universe cache auto true in let (active,passive,bag) = tables in let eqs,bag,newmeta = List.fold_left (fun (acc,bag,newmeta) (args,metasenv,newmetas,head,newmeta') -> let maxmeta,equality = build_equality bag head args t newmetas newmeta' in equality::acc,bag,maxmeta) ([],bag,newmeta) saturated in (eqs@facts, cache, newmeta) with FillingFailure (cache,newmeta) -> (* if filling hypothesis fails we add the equation to the cache *) (facts,cache,newmeta) ) ([],cache,newmeta) equations let close_more tables maxmeta context status auto universe cache = let (active,passive,bag) = tables in let proof, goalno = status in let _, metasenv,_subst,_,_, _ = proof in let signature = MetadataQuery.signature_of metasenv goalno in let equations = retrieve_equations false signature universe cache context metasenv in let eqs_and_types = HExtlib.filter_map (fun t -> let ty,_ = CicTypeChecker.type_of_aux' metasenv context t CicUniv.oblivion_ugraph in (* retrieve_equations could also return flexible terms *) if is_an_equality ty then Some(t,ty) else None) equations in let units, cache, maxm = build_equalities auto context metasenv tables universe cache maxmeta eqs_and_types in debug_print (lazy (">>>>>>> gained from a new context saturation >>>>>>>>>" ^ string_of_int maxm)); List.iter (fun e -> debug_print (lazy (Equality.string_of_equality e))) units; debug_print (lazy ">>>>>>>>>>>>>>>>>>>>>>"); let passive = Saturation.add_to_passive units passive in let no = List.length units in debug_print (lazy ("No = " ^ (string_of_int no))); let active,passive,newmeta = Saturation.pump_actives context bag maxm active passive (no+1) infinity in (active,passive,bag),cache,newmeta let find_context_equalities maxmeta bag context proof (universe:Universe.universe) cache = let module C = Cic in let module S = CicSubstitution in let module T = CicTypeChecker in let _,metasenv,_subst,_,_, _ = proof in let newmeta = max (ProofEngineHelpers.new_meta_of_proof ~proof) maxmeta in (* if use_auto is true, we try to close the hypothesis of equational statements using auto; a naif, and probably wrong approach *) let rec aux cache index newmeta = function | [] -> [], newmeta,cache | (Some (_, C.Decl (term)))::tl -> debug_print (lazy (Printf.sprintf "Examining: %d (%s)" index (CicPp.ppterm term))); let do_find context term = match term with | C.Prod (name, s, t) when is_an_equality t -> (try let term = S.lift index term in let saturated,cache,newmeta = fill_hypothesis context metasenv newmeta term empty_tables universe cache default_auto false in let eqs,newmeta = List.fold_left (fun (acc,newmeta) (args,metasenv,newmetas,head,newmeta') -> let newmeta, equality = build_equality bag head args (Cic.Rel index) newmetas (max newmeta newmeta') in equality::acc, newmeta + 1) ([],newmeta) saturated in eqs, newmeta, cache with FillingFailure (cache,newmeta) -> [],newmeta,cache) | C.Appl [C.MutInd (uri, _, _); ty; t1; t2] when LibraryObjects.is_eq_URI uri -> let term = S.lift index term in let newmeta, e = build_equality bag term [] (Cic.Rel index) [] newmeta in [e], (newmeta+1),cache | _ -> [], newmeta, cache in let eqs, newmeta, cache = do_find context term in let rest, newmeta,cache = aux cache (index+1) newmeta tl in List.map (fun x -> index,x) eqs @ rest, newmeta, cache | _::tl -> aux cache (index+1) newmeta tl in let il, maxm, cache = aux cache 1 newmeta context in let indexes, equalities = List.split il in indexes, equalities, maxm, cache ;; (********** PARAMETERS PASSING ***************) let bool params name default = try let s = List.assoc name params in if s = "" || s = "1" || s = "true" || s = "yes" || s = "on" then true else if s = "0" || s = "false" || s = "no" || s= "off" then false else let msg = "Unrecognized value for parameter "^name^"\n" in let msg = msg^"Accepted values are 1,true,yes,on and 0,false,no,off" in raise (ProofEngineTypes.Fail (lazy msg)) with Not_found -> default ;; let string params name default = try List.assoc name params with | Not_found -> default ;; let int params name default = try int_of_string (List.assoc name params) with | Not_found -> default | Failure _ -> raise (ProofEngineTypes.Fail (lazy (name ^ " must be an integer"))) ;; let flags_of_params params ?(for_applyS=false) () = let int = int params in let bool = bool params in let close_more = bool "close_more" false in let use_paramod = bool "use_paramod" true in let use_only_paramod = if for_applyS then true else bool "paramodulation" false in let use_library = bool "library" ((AutoTypes.default_flags()).AutoTypes.use_library) in let depth = int "depth" ((AutoTypes.default_flags()).AutoTypes.maxdepth) in let width = int "width" ((AutoTypes.default_flags()).AutoTypes.maxwidth) in let size = int "size" ((AutoTypes.default_flags()).AutoTypes.maxsize) in let gsize = int "gsize" ((AutoTypes.default_flags()).AutoTypes.maxgoalsizefactor) in let do_type = bool "type" false in let timeout = int "timeout" 0 in { AutoTypes.maxdepth = if use_only_paramod then 2 else depth; AutoTypes.maxwidth = width; AutoTypes.maxsize = size; AutoTypes.timeout = if timeout = 0 then if for_applyS then Unix.gettimeofday () +. 30.0 else infinity else Unix.gettimeofday() +. (float_of_int timeout); AutoTypes.use_library = use_library; AutoTypes.use_paramod = use_paramod; AutoTypes.use_only_paramod = use_only_paramod; AutoTypes.close_more = close_more; AutoTypes.dont_cache_failures = false; AutoTypes.maxgoalsizefactor = gsize; AutoTypes.do_types = do_type; } let universe_of_params metasenv context universe tl = if tl = [] then universe else let tys = List.map (fun term -> fst (CicTypeChecker.type_of_aux' metasenv context term CicUniv.oblivion_ugraph)) tl in Universe.index_list Universe.empty context (List.combine tl tys) ;; (***************** applyS *******************) let new_metasenv_and_unify_and_t dbd flags universe proof goal ?tables newmeta' metasenv' context term' ty termty goal_arity = let (consthead,newmetasenv,arguments,_) = TermUtil.saturate_term newmeta' metasenv' context termty goal_arity in let term'' = match arguments with [] -> term' | _ -> Cic.Appl (term'::arguments) in let proof',oldmetasenv = let (puri,metasenv,_subst,pbo,pty, attrs) = proof in (puri,newmetasenv,_subst,pbo,pty, attrs),metasenv in let goal_for_paramod = match LibraryObjects.eq_URI () with | Some uri -> Cic.Appl [Cic.MutInd (uri,0,[]); Cic.Sort Cic.Prop; consthead; ty] | None -> raise (ProofEngineTypes.Fail (lazy "No equality defined")) in let newmeta = CicMkImplicit.new_meta newmetasenv (*subst*) [] in let metasenv_for_paramod = (newmeta,context,goal_for_paramod)::newmetasenv in let proof'' = let uri,_,_subst,p,ty, attrs = proof' in uri,metasenv_for_paramod,_subst,p,ty, attrs in let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let proof''',goals = ProofEngineTypes.apply_tactic (EqualityTactics.rewrite_tac ~direction:`RightToLeft ~pattern:(ProofEngineTypes.conclusion_pattern None) (Cic.Meta(newmeta,irl)) []) (proof'',goal) in let goal = match goals with [g] -> g | _ -> assert false in let proof'''', _ = ProofEngineTypes.apply_tactic (PrimitiveTactics.apply_tac term'') (proof''',goal) in match let (active, passive,bag), cache, maxmeta = init_cache_and_tables ~dbd flags.use_library true true false universe (proof'''',newmeta) in Saturation.given_clause bag maxmeta (proof'''',newmeta) active passive max_int max_int flags.timeout with | None, _,_,_ -> raise (ProofEngineTypes.Fail (lazy ("FIXME: propaga le tabelle"))) | Some (_,proof''''',_), active,passive,_ -> proof''''', ProofEngineHelpers.compare_metasenvs ~oldmetasenv ~newmetasenv:(let _,m,_subst,_,_, _ = proof''''' in m), active, passive ;; let rec count_prods context ty = match CicReduction.whd context ty with Cic.Prod (n,s,t) -> 1 + count_prods (Some (n,Cic.Decl s)::context) t | _ -> 0 let apply_smart ~dbd ~term ~subst ~universe ?tables ~params:(univ,params) (proof, goal) = let module T = CicTypeChecker in let module R = CicReduction in let module C = Cic in let (_,metasenv,_subst,_,_, _) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let flags = flags_of_params params ~for_applyS:true () in let universe = universe_of_params metasenv context universe univ in let newmeta = CicMkImplicit.new_meta metasenv subst in let exp_named_subst_diff,newmeta',newmetasenvfragment,term' = match term with C.Var (uri,exp_named_subst) -> let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff = PrimitiveTactics.generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst in exp_named_subst_diff,newmeta',newmetasenvfragment, C.Var (uri,exp_named_subst') | C.Const (uri,exp_named_subst) -> let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff = PrimitiveTactics.generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst in exp_named_subst_diff,newmeta',newmetasenvfragment, C.Const (uri,exp_named_subst') | C.MutInd (uri,tyno,exp_named_subst) -> let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff = PrimitiveTactics.generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst in exp_named_subst_diff,newmeta',newmetasenvfragment, C.MutInd (uri,tyno,exp_named_subst') | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff = PrimitiveTactics.generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst in exp_named_subst_diff,newmeta',newmetasenvfragment, C.MutConstruct (uri,tyno,consno,exp_named_subst') | _ -> [],newmeta,[],term in let metasenv' = metasenv@newmetasenvfragment in let termty,_ = CicTypeChecker.type_of_aux' metasenv' context term' CicUniv.oblivion_ugraph in let termty = CicSubstitution.subst_vars exp_named_subst_diff termty in let goal_arity = count_prods context ty in let proof, gl, active, passive = new_metasenv_and_unify_and_t dbd flags universe proof goal ?tables newmeta' metasenv' context term' ty termty goal_arity in proof, gl, active, passive ;; (****************** AUTO ********************) let mk_irl ctx = CicMkImplicit.identity_relocation_list_for_metavariable ctx;; let ugraph = CicUniv.oblivion_ugraph;; let typeof = CicTypeChecker.type_of_aux';; let ppterm ctx t = let names = List.map (function None -> None | Some (x,_) -> Some x) ctx in CicPp.pp t names ;; let is_in_prop context subst metasenv ty = let sort,u = typeof ~subst metasenv context ty CicUniv.oblivion_ugraph in fst (CicReduction.are_convertible context sort (Cic.Sort Cic.Prop) u) ;; let assert_proof_is_valid proof metasenv context goalty = if debug then begin let ty,u = typeof metasenv context proof CicUniv.oblivion_ugraph in let b,_ = CicReduction.are_convertible context ty goalty u in if not b then begin let names = List.map (function None -> None | Some (x,_) -> Some x) context in debug_print (lazy ("PROOF:" ^ CicPp.pp proof names)); debug_print (lazy ("PROOFTY:" ^ CicPp.pp ty names)); debug_print (lazy ("GOAL:" ^ CicPp.pp goalty names)); debug_print (lazy ("MENV:" ^ CicMetaSubst.ppmetasenv [] metasenv)); end; assert b end else () ;; let assert_subst_are_disjoint subst subst' = if debug then assert(List.for_all (fun (i,_) -> List.for_all (fun (j,_) -> i<>j) subst') subst) else () ;; let split_goals_in_prop metasenv subst gl = List.partition (fun g -> let _,context,ty = CicUtil.lookup_meta g metasenv in try let sort,u = typeof ~subst metasenv context ty ugraph in let b,_ = CicReduction.are_convertible ~subst ~metasenv context sort (Cic.Sort Cic.Prop) u in b with | CicTypeChecker.AssertFailure s | CicTypeChecker.TypeCheckerFailure s -> debug_print (lazy ("NON TIPA" ^ ppterm context (CicMetaSubst.apply_subst subst ty))); debug_print s; false) (* FIXME... they should type! *) gl ;; let split_goals_with_metas metasenv subst gl = List.partition (fun g -> let _,context,ty = CicUtil.lookup_meta g metasenv in let ty = CicMetaSubst.apply_subst subst ty in CicUtil.is_meta_closed ty) gl ;; let order_new_goals metasenv subst open_goals ppterm = let prop,rest = split_goals_in_prop metasenv subst open_goals in let closed_prop, open_prop = split_goals_with_metas metasenv subst prop in let closed_type, open_type = split_goals_with_metas metasenv subst rest in let open_goals = (List.map (fun x -> x,P) (open_prop @ closed_prop)) @ (List.map (fun x -> x,T) (open_type @ closed_type)) in let tys = List.map (fun (i,sort) -> let _,_,ty = CicUtil.lookup_meta i metasenv in i,ty,sort) open_goals in debug_print (lazy (" OPEN: "^ String.concat "\n" (List.map (function | (i,t,P) -> string_of_int i ^ ":"^ppterm t^ "Prop" | (i,t,T) -> string_of_int i ^ ":"^ppterm t^ "Type") tys))); open_goals ;; let is_an_equational_goal = function | Cic.Appl [Cic.MutInd(u,_,_);_;_;_] when LibraryObjects.is_eq_URI u -> true | _ -> false ;; (* let prop = function (_,depth,P) -> depth < 9 | _ -> false;; *) let calculate_timeout flags = if flags.timeout = 0. then (debug_print (lazy "AUTO WITH NO TIMEOUT"); {flags with timeout = infinity}) else flags ;; let is_equational_case goalty flags = let ensure_equational t = if is_an_equational_goal t then true else false (* let msg="Not an equational goal.\nYou cant use the paramodulation flag"in raise (ProofEngineTypes.Fail (lazy msg)) *) in (flags.use_paramod && is_an_equational_goal goalty) || (flags.use_only_paramod && ensure_equational goalty) ;; (* let cache_add_success sort cache k v = if sort = P then cache_add_success cache k v else cache_remove_underinspection cache k ;; *) type menv = Cic.metasenv type subst = Cic.substitution type goal = ProofEngineTypes.goal * int * AutoTypes.sort let candidate_no = ref 0;; type candidate = int * Cic.term type cache = AutoCache.cache type tables = Saturation.active_table * Saturation.passive_table * Equality.equality_bag type fail = (* the goal (mainly for depth) and key of the goal *) goal * AutoCache.cache_key type op = (* goal has to be proved *) | D of goal (* goal has to be cached as a success obtained using candidate as the first * step *) | S of goal * AutoCache.cache_key * candidate * int type elem = (* menv, subst, size, operations done (only S), operations to do, failures to cache if any op fails *) menv * subst * int * op list * op list * fail list type status = (* list of computations that may lead to the solution: all op list will * end with the same (S(g,_)) *) elem list type auto_result = (* menv, subst, alternatives, tables, cache, maxmeta *) | Proved of menv * subst * elem list * tables * cache * int | Gaveup of tables * cache * int (* the status exported to the external observer *) type auto_status = (* context, (goal,candidate) list, and_list, history *) Cic.context * (int * Cic.term * bool * int * (int * Cic.term) list) list * (int * Cic.term * int) list * Cic.term list let d_prefix l = let rec aux acc = function | (D g)::tl -> aux (acc@[g]) tl | _ -> acc in aux [] l ;; let prop_only l = List.filter (function (_,_,P) -> true | _ -> false) l ;; let d_goals l = let rec aux acc = function | (D g)::tl -> aux (acc@[g]) tl | (S _)::tl -> aux acc tl | [] -> acc in aux [] l ;; let calculate_goal_ty (goalno,_,_) s m = try let _,cc,goalty = CicUtil.lookup_meta goalno m in (* XXX applicare la subst al contesto? *) Some (cc, CicMetaSubst.apply_subst s goalty) with CicUtil.Meta_not_found i when i = goalno -> None ;; let calculate_closed_goal_ty (goalno,_,_) s = try let cc,_,goalty = List.assoc goalno s in (* XXX applicare la subst al contesto? *) Some (cc, CicMetaSubst.apply_subst s goalty) with Not_found -> None ;; let pp_status ctx status = if debug then let names = Utils.names_of_context ctx in let pp x = let x = ProofEngineReduction.replace ~equality:(fun a b -> match b with Cic.Meta _ -> true | _ -> false) ~what:[Cic.Rel 1] ~with_what:[Cic.Implicit None] ~where:x in CicPp.pp x names in let string_of_do m s (gi,_,_ as g) d = match calculate_goal_ty g s m with | Some (_,gty) -> Printf.sprintf "D(%d, %s, %d)" gi (pp gty) d | None -> Printf.sprintf "D(%d, _, %d)" gi d in let string_of_s m su k (ci,ct) gi = Printf.sprintf "S(%d, %s, %s, %d)" gi (pp k) (pp ct) ci in let string_of_ol m su l = String.concat " | " (List.map (function | D (g,d,s) -> string_of_do m su (g,d,s) d | S ((gi,_,_),k,c,_) -> string_of_s m su k c gi) l) in let string_of_fl m s fl = String.concat " | " (List.map (fun ((i,_,_),ty) -> Printf.sprintf "(%d, %s)" i (pp ty)) fl) in let rec aux = function | [] -> () | (m,s,_,_,ol,fl)::tl -> Printf.eprintf "< [%s] ;;; [%s]>\n" (string_of_ol m s ol) (string_of_fl m s fl); aux tl in Printf.eprintf "-------------------------- status -------------------\n"; aux status; Printf.eprintf "-----------------------------------------------------\n"; ;; let auto_status = ref [] ;; let auto_context = ref [];; let in_pause = ref false;; let pause b = in_pause := b;; let cond = Condition.create ();; let mutex = Mutex.create ();; let hint = ref None;; let prune_hint = ref [];; let step _ = Condition.signal cond;; let give_hint n = hint := Some n;; let give_prune_hint hint = prune_hint := hint :: !prune_hint ;; let check_pause _ = if !in_pause then begin Mutex.lock mutex; Condition.wait cond mutex; Mutex.unlock mutex end ;; let get_auto_status _ = let status = !auto_status in let and_list,elems,last = match status with | [] -> [],[],[] | (m,s,_,don,gl,fail)::tl -> let and_list = HExtlib.filter_map (fun (id,d,_ as g) -> match calculate_goal_ty g s m with | Some (_,x) -> Some (id,x,d) | None -> None) (d_goals gl) in let rows = (* these are the S goalsin the or list *) let orlist = List.map (fun (m,s,_,don,gl,fail) -> HExtlib.filter_map (function S (g,k,c,_) -> Some (g,k,c) | _ -> None) (List.rev don @ gl)) status in (* this function eats id from a list l::[id,x] returning x, l *) let eat_tail_if_eq id l = let rec aux (s, l) = function | [] -> s, l | ((id1,_,_),k1,c)::tl when id = id1 -> (match s with | None -> aux (Some c,l) tl | Some _ -> assert false) | ((id1,_,_),k1,c as e)::tl -> aux (s, e::l) tl in let c, l = aux (None, []) l in c, List.rev l in let eat_in_parallel id l = let rec aux (b,eaten, new_l as acc) l = match l with | [] -> acc | l::tl -> match eat_tail_if_eq id l with | None, l -> aux (b@[false], eaten, new_l@[l]) tl | Some t,l -> aux (b@[true],eaten@[t], new_l@[l]) tl in aux ([],[],[]) l in let rec eat_all rows l = match l with | [] -> rows | elem::or_list -> match List.rev elem with | ((to_eat,depth,_),k,_)::next_lunch -> let b, eaten, l = eat_in_parallel to_eat l in let eaten = HExtlib.list_uniq eaten in let eaten = List.rev eaten in let b = true (* List.hd (List.rev b) *) in let rows = rows @ [to_eat,k,b,depth,eaten] in eat_all rows l | [] -> eat_all rows or_list in eat_all [] (List.rev orlist) in let history = HExtlib.filter_map (function (S (_,_,(_,c),_)) -> Some c | _ -> None) gl in (* let rows = List.filter (fun (_,l) -> l <> []) rows in *) and_list, rows, history in !auto_context, elems, and_list, last ;; (* Works if there is no dependency over proofs *) let is_a_green_cut goalty = CicUtil.is_meta_closed goalty ;; let rec first_s = function | (D _)::tl -> first_s tl | (S (g,k,c,s))::tl -> Some ((g,k,c,s),tl) | [] -> None ;; let list_union l1 l2 = (* TODO ottimizzare compare *) HExtlib.list_uniq (List.sort compare (l1 @ l1)) ;; let eat_head todo id fl orlist = let rec aux acc = function | [] -> [], acc | (m, s, _, _, todo1, fl1)::tl as orlist -> let rec aux1 todo1 = match first_s todo1 with | None -> orlist, acc | Some (((gno,_,_),_,_,_), todo11) -> (* TODO confronto tra todo da ottimizzare *) if gno = id && todo11 = todo then aux (list_union fl1 acc) tl else aux1 todo11 in aux1 todo1 in aux fl orlist ;; let close_proof p ty menv context = let metas = List.map fst (CicUtil.metas_of_term p @ CicUtil.metas_of_term ty) in let menv = List.filter (fun (i,_,_) -> List.exists ((=)i) metas) menv in naif_closure p menv context ;; (* XXX capire bene quando aggiungere alla cache *) let add_to_cache_and_del_from_orlist_if_green_cut g s m cache key todo orlist fl ctx size minsize = let cache = cache_remove_underinspection cache key in (* prima per fare la irl usavamo il contesto vero e proprio e non quello * canonico! XXX *) match calculate_closed_goal_ty g s with | None -> assert false | Some (canonical_ctx , gty) -> let goalno,depth,sort = g in let irl = mk_irl canonical_ctx in let goal = Cic.Meta(goalno, irl) in let proof = CicMetaSubst.apply_subst s goal in let green_proof, closed_proof = let b = is_a_green_cut proof in if not b then b, (* close_proof proof gty m ctx *) proof else b, proof in debug_print (lazy ("TENTATIVE CACHE: " ^ CicPp.ppterm key)); if is_a_green_cut key then (* if the initia goal was closed, we cut alternatives *) let _ = debug_print (lazy ("MANGIO: " ^ string_of_int goalno)) in let orlist, fl = eat_head todo goalno fl orlist in let cache = if size < minsize then (debug_print (lazy ("NO CACHE: 2 (size <= minsize)"));cache) else (* if the proof is closed we cache it *) if green_proof then cache_add_success cache key proof else (* cache_add_success cache key closed_proof *) (debug_print (lazy ("NO CACHE: (no gree proof)"));cache) in cache, orlist, fl, true else let cache = debug_print (lazy ("TENTATIVE CACHE: " ^ CicPp.ppterm gty)); if size < minsize then (debug_print (lazy ("NO CACHE: (size <= minsize)")); cache) else (* if the substituted goal and the proof are closed we cache it *) if is_a_green_cut gty then if green_proof then cache_add_success cache gty proof else (* cache_add_success cache gty closed_proof *) (debug_print (lazy ("NO CACHE: (no green proof (gty))"));cache) else (* try let ty, _ = CicTypeChecker.type_of_aux' ~subst:s m ctx closed_proof CicUniv.oblivion_ugraph in if is_a_green_cut ty then cache_add_success cache ty closed_proof else cache with | CicTypeChecker.TypeCheckerFailure _ ->*) (debug_print (lazy ("NO CACHE: (no green gty )"));cache) in cache, orlist, fl, false ;; let close_failures (fl : fail list) (cache : cache) = List.fold_left (fun cache ((gno,depth,_),gty) -> debug_print (lazy ("FAIL: INDUCED: " ^ string_of_int gno)); cache_add_failure cache gty depth) cache fl ;; let put_in_subst subst metasenv (goalno,_,_) canonical_ctx t ty = let entry = goalno, (canonical_ctx, t,ty) in assert_subst_are_disjoint subst [entry]; let subst = entry :: subst in let metasenv = CicMetaSubst.apply_subst_metasenv subst metasenv in subst, metasenv ;; let mk_fake_proof metasenv subst (goalno,_,_) goalty context = None,metasenv,subst ,Cic.Meta(goalno,mk_irl context),goalty, [] ;; let equational_case tables maxm cache depth fake_proof goalno goalty subst context flags = let active,passive,bag = tables in let ppterm = ppterm context in let status = (fake_proof,goalno) in if flags.use_only_paramod then begin debug_print (lazy ("PARAMODULATION SU: " ^ string_of_int goalno ^ " " ^ ppterm goalty )); let goal_steps, saturation_steps, timeout = max_int,max_int,flags.timeout in match Saturation.given_clause bag maxm status active passive goal_steps saturation_steps timeout with | None, active, passive, maxmeta -> [], (active,passive,bag), cache, maxmeta, flags | Some(subst',(_,metasenv,_subst,proof,_, _),open_goals),active, passive,maxmeta -> assert_subst_are_disjoint subst subst'; let subst = subst@subst' in let open_goals = order_new_goals metasenv subst open_goals ppterm in let open_goals = List.map (fun (x,sort) -> x,depth-1,sort) open_goals in incr candidate_no; [(!candidate_no,proof),metasenv,subst,open_goals], (active,passive,bag), cache, maxmeta, flags end else begin debug_print (lazy ("SUBSUMPTION SU: " ^ string_of_int goalno ^ " " ^ ppterm goalty)); let res, maxmeta = Saturation.all_subsumed bag maxm status active passive in assert (maxmeta >= maxm); let res' = List.map (fun (subst',(_,metasenv,_subst,proof,_, _),open_goals) -> assert_subst_are_disjoint subst subst'; let subst = subst@subst' in let open_goals = order_new_goals metasenv subst open_goals ppterm in let open_goals = List.map (fun (x,sort) -> x,depth-1,sort) open_goals in incr candidate_no; (!candidate_no,proof),metasenv,subst,open_goals) res in res', (active,passive,bag), cache, maxmeta, flags end ;; let try_candidate goalty tables maxm subst fake_proof goalno depth context cand = let ppterm = ppterm context in try let subst,((_,metasenv,_,_,_,_), open_goals),maxmeta = (PrimitiveTactics.apply_with_subst ~subst ~maxmeta:maxm ~term:cand) (fake_proof,goalno) in debug_print (lazy (" OK: " ^ ppterm cand)); let metasenv = CicRefine.pack_coercion_metasenv metasenv in let open_goals = order_new_goals metasenv subst open_goals ppterm in let open_goals = List.map (fun (x,sort) -> x,depth-1,sort) open_goals in incr candidate_no; Some ((!candidate_no,cand),metasenv,subst,open_goals), tables , maxmeta with | ProofEngineTypes.Fail s -> None,tables, maxm | CicUnification.Uncertain s -> None,tables, maxm ;; let sort_new_elems = List.sort (fun (_,_,_,l1) (_,_,_,l2) -> List.length (prop_only l1) - List.length (prop_only l2)) ;; let applicative_case tables maxm depth subst fake_proof goalno goalty metasenv context universe cache = let candidates = get_candidates universe cache goalty in let tables, elems, maxm = List.fold_left (fun (tables,elems,maxm) cand -> match try_candidate goalty tables maxm subst fake_proof goalno depth context cand with | None, tables,maxm -> tables,elems, maxm | Some x, tables, maxm -> tables,x::elems, maxm) (tables,[],maxm) candidates in let elems = sort_new_elems elems in elems, tables, cache, maxm ;; let equational_and_applicative_case universe flags m s g gty tables cache maxm context = let goalno, depth, sort = g in let fake_proof = mk_fake_proof m s g gty context in if is_equational_case gty flags then let elems,tables,cache,maxm1, flags = equational_case tables maxm cache depth fake_proof goalno gty s context flags in let maxm = maxm1 in let more_elems, tables, cache, maxm1 = if flags.use_only_paramod then [],tables, cache, maxm else applicative_case tables maxm depth s fake_proof goalno gty m context universe cache in let maxm = maxm1 in elems@more_elems, tables, cache, maxm, flags else let elems, tables, cache, maxm = applicative_case tables maxm depth s fake_proof goalno gty m context universe cache in elems, tables, cache, maxm, flags ;; let rec condition_for_hint i = function | [] -> false | S (_,_,(j,_),_):: tl -> j <> i (* && condition_for_hint i tl *) | _::tl -> condition_for_hint i tl ;; let remove_s_from_fl (id,_,_) (fl : fail list) = let rec aux = function | [] -> [] | ((id1,_,_),_)::tl when id = id1 -> tl | hd::tl -> hd :: aux tl in aux fl ;; let prunable_for_size flags s m todo = let rec aux b = function | (S _)::tl -> aux b tl | (D (_,_,T))::tl -> aux b tl | (D g)::tl -> (match calculate_goal_ty g s m with | None -> aux b tl | Some (canonical_ctx, gty) -> let gsize, _ = Utils.weight_of_term ~consider_metas:false ~count_metas_occurrences:true gty in let newb = b || gsize > flags.maxgoalsizefactor in aux newb tl) | [] -> b in aux false todo (* let prunable ty todo = let rec aux b = function | (S(_,k,_,_))::tl -> aux (b || Equality.meta_convertibility k ty) tl | (D (_,_,T))::tl -> aux b tl | D _::_ -> false | [] -> b in aux false todo ;; *) let prunable menv subst ty todo = let rec aux = function | (S(_,k,_,_))::tl -> (match Equality.meta_convertibility_subst k ty menv with | None -> aux tl | Some variant -> no_progress variant tl (* || aux tl*)) | (D (_,_,T))::tl -> aux tl | _ -> false and no_progress variant = function | [] -> (*prerr_endline "++++++++++++++++++++++++ no_progress";*) true | D ((n,_,P) as g)::tl -> (match calculate_goal_ty g subst menv with | None -> no_progress variant tl | Some (_, gty) -> (match calculate_goal_ty g variant menv with | None -> assert false | Some (_, gty') -> if gty = gty' then no_progress variant tl else false)) | _::tl -> no_progress variant tl in aux todo ;; let condition_for_prune_hint prune (m, s, size, don, todo, fl) = let s = HExtlib.filter_map (function S (_,_,(c,_),_) -> Some c | _ -> None) todo in List.for_all (fun i -> List.for_all (fun j -> i<>j) prune) s ;; let filter_prune_hint l = let prune = !prune_hint in prune_hint := []; (* possible race... *) if prune = [] then l else List.filter (condition_for_prune_hint prune) l ;; let auto_main tables maxm context flags universe cache elems = auto_context := context; let rec aux tables maxm flags cache (elems : status) = (* pp_status context elems; *) (* DEBUGGING CODE: uncomment these two lines to stop execution at each iteration auto_status := elems; check_pause (); *) let elems = filter_prune_hint elems in match elems with | (m, s, size, don, todo, fl)::orlist when !hint <> None -> (match !hint with | Some i when condition_for_hint i todo -> aux tables maxm flags cache orlist | _ -> hint := None; aux tables maxm flags cache elems) | [] -> (* complete failure *) Gaveup (tables, cache, maxm) | (m, s, _, _, [],_)::orlist -> (* complete success *) Proved (m, s, orlist, tables, cache, maxm) | (m, s, size, don, (D (_,_,T))::todo, fl)::orlist when not flags.AutoTypes.do_types -> (* skip since not Prop, don't even check if closed by side-effect *) aux tables maxm flags cache ((m, s, size, don, todo, fl)::orlist) | (m, s, size, don, (S(g, key, c,minsize) as op)::todo, fl)::orlist -> (* partial success, cache g and go on *) let cache, orlist, fl, sibling_pruned = add_to_cache_and_del_from_orlist_if_green_cut g s m cache key todo orlist fl context size minsize in debug_print (lazy (AutoCache.cache_print context cache)); let fl = remove_s_from_fl g fl in let don = if sibling_pruned then don else op::don in aux tables maxm flags cache ((m, s, size, don, todo, fl)::orlist) | (m, s, size, don, todo, fl)::orlist when List.length(prop_only (d_goals todo)) > flags.maxwidth -> debug_print (lazy ("FAIL: WIDTH")); (* too many goals in and generated by last th *) let cache = close_failures fl cache in aux tables maxm flags cache orlist | (m, s, size, don, todo, fl)::orlist when size > flags.maxsize -> debug_print (lazy ("FAIL: SIZE: "^string_of_int size ^ " > " ^ string_of_int flags.maxsize )); (* we already have a too large proof term *) let cache = close_failures fl cache in aux tables maxm flags cache orlist | _ when Unix.gettimeofday () > flags.timeout -> (* timeout *) debug_print (lazy ("FAIL: TIMEOUT")); Gaveup (tables, cache, maxm) | (m, s, size, don, (D (gno,depth,_ as g))::todo, fl)::orlist as status -> (* attack g *) match calculate_goal_ty g s m with | None -> (* closed by side effect *) debug_print (lazy ("SUCCESS: SIDE EFFECT: " ^ string_of_int gno)); aux tables maxm flags cache ((m,s,size,don,todo, fl)::orlist) | Some (canonical_ctx, gty) -> let gsize, _ = Utils.weight_of_term ~consider_metas:false ~count_metas_occurrences:true gty in if gsize > flags.maxgoalsizefactor then (debug_print (lazy ("FAIL: SIZE: goal: "^string_of_int gsize)); aux tables maxm flags cache orlist) else if prunable_for_size flags s m todo then (debug_print (lazy ("POTO at depth: "^(string_of_int depth))); aux tables maxm flags cache orlist) else (* still to be proved *) (debug_print (lazy ("EXAMINE: "^CicPp.ppterm gty)); match cache_examine cache gty with | Failed_in d when d >= depth -> (* fail depth *) debug_print (lazy ("FAIL: DEPTH (cache): "^string_of_int gno)); let cache = close_failures fl cache in aux tables maxm flags cache orlist | UnderInspection -> (* fail loop *) debug_print (lazy ("FAIL: LOOP: " ^ string_of_int gno)); let cache = close_failures fl cache in aux tables maxm flags cache orlist | Succeded t -> debug_print (lazy ("SUCCESS: CACHE HIT: " ^ string_of_int gno)); let s, m = put_in_subst s m g canonical_ctx t gty in aux tables maxm flags cache ((m, s, size, don,todo, fl)::orlist) | Notfound | Failed_in _ when depth > 0 -> ( (* more depth or is the first time we see the goal *) if prunable m s gty todo then (debug_print (lazy( "FAIL: LOOP: one father is equal")); aux tables maxm flags cache orlist) else let cache = cache_add_underinspection cache gty depth in auto_status := status; check_pause (); debug_print (lazy ("INSPECTING: " ^ string_of_int gno ^ "("^ string_of_int size ^ "): "^ CicPp.ppterm gty)); (* elems are possible computations for proving gty *) let elems, tables, cache, maxm, flags = equational_and_applicative_case universe flags m s g gty tables cache maxm context in if elems = [] then (* this goal has failed *) let cache = close_failures ((g,gty)::fl) cache in aux tables maxm flags cache orlist else (* elems = (cand,m,s,gl) *) let size_gl l = List.length (List.filter (function (_,_,P) -> true | _ -> false) l) in let elems = let inj_gl gl = List.map (fun g -> D g) gl in let rec map = function | [] -> assert false | (cand,m,s,gl)::[] -> (* in the last one we add the failure *) let todo = inj_gl gl @ (S(g,gty,cand,size+1))::todo in (* we are the last in OR, we fail on g and * also on all failures implied by g *) (m,s, size + size_gl gl, don, todo, (g,gty)::fl) :: orlist | (cand,m,s,gl)::tl -> (* we add the S step after gl and before todo *) let todo = inj_gl gl @ (S(g,gty,cand,size+1))::todo in (* since we are not the last in OR, we do not * imply failures *) (m,s, size + size_gl gl, don, todo, []) :: map tl in map elems in aux tables maxm flags cache elems) | _ -> (* no more depth *) debug_print (lazy ("FAIL: DEPTH: " ^ string_of_int gno)); let cache = close_failures fl cache in aux tables maxm flags cache orlist) in (aux tables maxm flags cache elems : auto_result) ;; let auto_all_solutions maxm tables universe cache context metasenv gl flags = let goals = order_new_goals metasenv [] gl CicPp.ppterm in let goals = List.map (fun (x,s) -> D (x,flags.maxdepth,s)) goals in let elems = [metasenv,[],1,[],goals,[]] in let rec aux tables maxm solutions cache elems flags = match auto_main tables maxm context flags universe cache elems with | Gaveup (tables,cache,maxm) -> solutions,cache,maxm | Proved (metasenv,subst,others,tables,cache,maxm) -> if Unix.gettimeofday () > flags.timeout then ((subst,metasenv)::solutions), cache, maxm else aux tables maxm ((subst,metasenv)::solutions) cache others flags in let rc = aux tables maxm [] cache elems flags in match rc with | [],cache,maxm -> [],cache,maxm | solutions,cache,maxm -> let solutions = HExtlib.filter_map (fun (subst,newmetasenv) -> let opened = ProofEngineHelpers.compare_metasenvs ~oldmetasenv:metasenv ~newmetasenv in if opened = [] then Some subst else None) solutions in solutions,cache,maxm ;; (* }}} ****************** AUTO ***************) let auto flags metasenv tables universe cache context metasenv gl = let initial_time = Unix.gettimeofday() in let goals = order_new_goals metasenv [] gl CicPp.ppterm in let goals = List.map (fun (x,s) -> D(x,flags.maxdepth,s)) goals in let elems = [metasenv,[],1,[],goals,[]] in match auto_main tables 0 context flags universe cache elems with | Proved (metasenv,subst,_, tables,cache,_) -> debug_print(lazy ("TIME:"^string_of_float(Unix.gettimeofday()-.initial_time))); Some (subst,metasenv), cache | Gaveup (tables,cache,maxm) -> debug_print(lazy ("TIME:"^string_of_float(Unix.gettimeofday()-.initial_time))); None,cache ;; let applyS_tac ~dbd ~term ~params ~universe = ProofEngineTypes.mk_tactic (fun status -> try let proof, gl,_,_ = apply_smart ~dbd ~term ~subst:[] ~params ~universe status in proof, gl with | CicUnification.UnificationFailure msg | CicTypeChecker.TypeCheckerFailure msg -> raise (ProofEngineTypes.Fail msg)) let auto_tac ~(dbd:HSql.dbd) ~params:(univ,params) ~universe (proof, goal) = let _,metasenv,_subst,_,_, _ = proof in let _,context,goalty = CicUtil.lookup_meta goal metasenv in let universe = universe_of_params metasenv context universe univ in let flags = flags_of_params params () in let use_library = flags.use_library in let tables,cache,newmeta = init_cache_and_tables ~dbd use_library flags.use_only_paramod true false universe (proof, goal) in let tables,cache,newmeta = if flags.close_more then close_more tables newmeta context (proof, goal) auto_all_solutions universe cache else tables,cache,newmeta in let initial_time = Unix.gettimeofday() in let (_,oldmetasenv,_subst,_,_, _) = proof in hint := None; let elem = metasenv,[],1,[],[D (goal,flags.maxdepth,P)],[] in match auto_main tables newmeta context flags universe cache [elem] with | Proved (metasenv,subst,_, tables,cache,_) -> (*prerr_endline ("TIME:"^string_of_float(Unix.gettimeofday()-.initial_time));*) let proof,metasenv = ProofEngineHelpers.subst_meta_and_metasenv_in_proof proof goal subst metasenv in let opened = ProofEngineHelpers.compare_metasenvs ~oldmetasenv ~newmetasenv:metasenv in proof,opened | Gaveup (tables,cache,maxm) -> debug_print (lazy ("TIME:"^ string_of_float(Unix.gettimeofday()-.initial_time))); raise (ProofEngineTypes.Fail (lazy "Auto gave up")) ;; let auto_tac ~dbd ~params ~universe = ProofEngineTypes.mk_tactic (auto_tac ~params ~dbd ~universe);; let eq_of_goal = function | Cic.Appl [Cic.MutInd(uri,0,_);_;_;_] when LibraryObjects.is_eq_URI uri -> uri | _ -> raise (ProofEngineTypes.Fail (lazy ("The goal is not an equality "))) ;; (* performs steps of rewrite with the universe, obtaining if possible * a trivial goal *) let solve_rewrite_tac ~universe ~params:(univ,params) (proof,goal as status)= let _,metasenv,_subst,_,_,_ = proof in let _,context,ty = CicUtil.lookup_meta goal metasenv in let steps = int_of_string (string params "steps" "1") in let universe = universe_of_params metasenv context universe univ in let eq_uri = eq_of_goal ty in let (active,passive,bag), cache, maxm = (* we take the whole universe (no signature filtering) *) init_cache_and_tables false true false true universe (proof,goal) in let initgoal = [], metasenv, ty in let table = let equalities = (Saturation.list_of_passive passive) in (* we demodulate using both actives passives *) List.fold_left (fun tbl eq -> Indexing.index tbl eq) (snd active) equalities in let env = metasenv,context,CicUniv.oblivion_ugraph in match Indexing.solve_demodulating bag env table initgoal steps with | Some (proof, metasenv, newty) -> let refl = match newty with | Cic.Appl[Cic.MutInd _;eq_ty;left;_] -> Equality.Exact (Equality.refl_proof eq_uri eq_ty left) | _ -> assert false in let proofterm,_ = Equality.build_goal_proof bag eq_uri proof refl newty [] context metasenv in ProofEngineTypes.apply_tactic (PrimitiveTactics.apply_tac ~term:proofterm) status | None -> raise (ProofEngineTypes.Fail (lazy ("Unable to solve with " ^ string_of_int steps ^ " demodulations"))) ;; let solve_rewrite_tac ~params ~universe () = ProofEngineTypes.mk_tactic (solve_rewrite_tac ~universe ~params) ;; (* DEMODULATE *) let demodulate_tac ~dbd ~universe ~params:(univ, params) (proof,goal)= let curi,metasenv,_subst,pbo,pty, attrs = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let universe = universe_of_params metasenv context universe univ in let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let initgoal = [], metasenv, ty in let eq_uri = eq_of_goal ty in let (active,passive,bag), cache, maxm = init_cache_and_tables ~dbd false true true false universe (proof,goal) in let equalities = (Saturation.list_of_passive passive) in (* we demodulate using both actives passives *) let table = List.fold_left (fun tbl eq -> Indexing.index tbl eq) (snd active) equalities in let changed,(newproof,newmetasenv, newty) = Indexing.demodulation_goal bag (metasenv,context,CicUniv.oblivion_ugraph) table initgoal in if changed then begin let opengoal = Equality.Exact (Cic.Meta(maxm,irl)) in let proofterm,_ = Equality.build_goal_proof bag eq_uri newproof opengoal ty [] context metasenv in let extended_metasenv = (maxm,context,newty)::metasenv in let extended_status = (curi,extended_metasenv,_subst,pbo,pty, attrs),goal in let (status,newgoals) = ProofEngineTypes.apply_tactic (PrimitiveTactics.apply_tac ~term:proofterm) extended_status in (status,maxm::newgoals) end else (* if newty = ty then *) raise (ProofEngineTypes.Fail (lazy "no progress")) (*else ProofEngineTypes.apply_tactic (ReductionTactics.simpl_tac ~pattern:(ProofEngineTypes.conclusion_pattern None)) initialstatus*) ;; let demodulate_tac ~dbd ~params ~universe = ProofEngineTypes.mk_tactic (demodulate_tac ~dbd ~params ~universe);; let pp_proofterm = Equality.pp_proofterm;; let revision = "$Revision$";; let size_and_depth context metasenv t = 100, 100