(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) (* $Id$ *) module C = Cic module U = UriManager module P = PrimitiveTactics module T = Tacticals module CR = CicReduction module PST = ProofEngineStructuralRules module PET = ProofEngineTypes module CTC = CicTypeChecker module CU = CicUniv module S = CicSubstitution module RT = ReductionTactics module PEH = ProofEngineHelpers module ET = EqualityTactics module DTI = DoubleTypeInference let debug = false let debug_print = if debug then (fun x -> prerr_endline (Lazy.force x)) else (fun _ -> ()) (* term ha tipo t1=t2; funziona solo se t1 e t2 hanno in testa costruttori diversi *) let discriminate_tac ~term = let true_URI = match LibraryObjects.true_URI () with Some uri -> uri | None -> raise (PET.Fail (lazy "You need to register the default \"true\" definition first. Please use the \"default\" command")) in let false_URI = match LibraryObjects.false_URI () with Some uri -> uri | None -> raise (PET.Fail (lazy "You need to register the default \"false\" definition first. Please use the \"default\" command")) in let fail msg = raise (PET.Fail (lazy ("Discriminate: " ^ msg))) in let find_discriminating_consno t1 t2 = let rec aux t1 t2 = match t1, t2 with | C.MutConstruct _, C.MutConstruct _ when t1 = t2 -> None | C.Appl ((C.MutConstruct _ as constr1) :: args1), C.Appl ((C.MutConstruct _ as constr2) :: args2) when constr1 = constr2 -> let rec aux_list l1 l2 = match l1, l2 with | [], [] -> None | hd1 :: tl1, hd2 :: tl2 -> (match aux hd1 hd2 with | None -> aux_list tl1 tl2 | Some _ as res -> res) | _ -> (* same constructor applied to a different number of args *) assert false in aux_list args1 args2 | ((C.MutConstruct (_,_,consno1,subst1)), (C.MutConstruct (_,_,consno2,subst2))) | ((C.MutConstruct (_,_,consno1,subst1)), (C.Appl ((C.MutConstruct (_,_,consno2,subst2)) :: _))) | ((C.Appl ((C.MutConstruct (_,_,consno1,subst1)) :: _)), (C.MutConstruct (_,_,consno2,subst2))) | ((C.Appl ((C.MutConstruct (_,_,consno1,subst1)) :: _)), (C.Appl ((C.MutConstruct (_,_,consno2,subst2)) :: _))) when (consno1 <> consno2) || (subst1 <> subst2) -> Some consno2 | _ -> fail "not a discriminable equality" in aux t1 t2 in let mk_branches_and_outtype turi typeno consno context args = (* a list of "True" except for the element in position consno which * is "False" *) match fst (CicEnvironment.get_obj CU.oblivion_ugraph turi) with | C.InductiveDefinition (ind_type_list,_,paramsno,_) -> let _,_,rty,constructor_list = List.nth ind_type_list typeno in let false_constr_id,_ = List.nth constructor_list (consno - 1) in let branches = List.map (fun (id,cty) -> (* dubbio: e' corretto ridurre in questo context ??? *) let red_ty = CR.whd context cty in let rec aux t k = match t with | C.Prod (_,_,target) when (k <= paramsno) -> S.subst (List.nth args (k-1)) (aux target (k+1)) | C.Prod (binder,source,target) when (k > paramsno) -> C.Lambda (binder, source, (aux target (k+1))) | _ -> if (id = false_constr_id) then (C.MutInd(false_URI,0,[])) else (C.MutInd(true_URI,0,[])) in (S.lift 1 (aux red_ty 1))) constructor_list in let outtype = let seed = ref 0 in let rec mk_lambdas rev_left_args = function 0, args, C.Prod (_,so,ta) -> C.Lambda (C.Name (incr seed; "x" ^ string_of_int !seed), so, mk_lambdas rev_left_args (0,args,ta)) | 0, args, C.Sort _ -> let rec mk_rels = function 0 -> [] | n -> C.Rel n :: mk_rels (n - 1) in let argsno = List.length args in C.Lambda (C.Name "x", (if argsno + List.length rev_left_args > 0 then C.Appl (C.MutInd (turi, typeno, []) :: (List.map (S.lift (argsno + 1)) (List.rev rev_left_args)) @ mk_rels argsno) else C.MutInd (turi,typeno,[])), C.Sort C.Prop) | 0, _, _ -> assert false (* seriously screwed up *) | n, he::tl, C.Prod (_,_,ta) -> mk_lambdas (he::rev_left_args)(n-1,tl,S.subst he ta) | n,_,_ -> assert false (* we should probably reduce in some context *) in mk_lambdas [] (paramsno, args, rty) in branches, outtype | _ -> assert false in let discriminate'_tac ~term status = let (proof, goal) = status in let _,metasenv,_subst,_,_, _ = proof in let _,context,_ = CicUtil.lookup_meta goal metasenv in let termty,_ = CTC.type_of_aux' metasenv context term CU.oblivion_ugraph in match termty with | C.Appl [(C.MutInd (equri, 0, [])) ; tty ; t1 ; t2] when LibraryObjects.is_eq_URI equri -> let turi,typeno,exp_named_subst,args = match tty with | (C.MutInd (turi,typeno,exp_named_subst)) -> turi,typeno,exp_named_subst,[] | (C.Appl (C.MutInd (turi,typeno,exp_named_subst)::args)) -> turi,typeno,exp_named_subst,args | _ -> fail "not a discriminable equality" in let consno = match find_discriminating_consno t1 t2 with | Some consno -> consno | None -> fail "discriminating terms are structurally equal" in let branches,outtype = mk_branches_and_outtype turi typeno consno context args in PET.apply_tactic (T.then_ ~start:(EliminationTactics.elim_type_tac (C.MutInd (false_URI, 0, []))) ~continuation: (T.then_ ~start: (RT.change_tac ~pattern:(PET.conclusion_pattern None) (fun _ m u -> C.Appl [ C.Lambda ( C.Name "x", tty, C.MutCase (turi, typeno, outtype, (C.Rel 1), branches)); t2 ], m, u)) ~continuation: (T.then_ ~start: (ET.rewrite_simpl_tac ~direction:`RightToLeft ~pattern:(PET.conclusion_pattern None) term []) ~continuation: (IntroductionTactics.constructor_tac ~n:1)))) status | _ -> fail "not an equality" in PET.mk_tactic (discriminate'_tac ~term) let exn_noneq = PET.Fail (lazy "Injection: not an equality") let exn_nothingtodo = PET.Fail (lazy "Nothing to do") let exn_discrnonind = PET.Fail (lazy "Discriminate: object is not an Inductive Definition: it's imposible") let exn_injwronggoal = PET.Fail (lazy "Injection: goal after cut is not correct") let exn_noneqind = PET.Fail (lazy "Injection: not an equality over elements of an inductive type") let pp ctx t = let names = List.map (function Some (n,_) -> Some n | None -> None) ctx in CicPp.pp t names let clear_term first_time lterm = let clear_term status = let (proof, goal) = status in let _,metasenv,_subst,_,_, _ = proof in let _,context,_ = CicUtil.lookup_meta goal metasenv in let term, metasenv, _ugraph = lterm context metasenv CU.oblivion_ugraph in debug_print (lazy ("\nclear di: " ^ pp context term)); debug_print (lazy ("nel contesto:\n" ^ CicPp.ppcontext context)); let g () = if first_time then raise exn_nothingtodo else T.id_tac in let tactic = match term with | C.Rel n -> begin match List.nth context (pred n) with | Some (C.Name id, _) -> T.if_ ~fail:(g ()) ~start:(PST.clear ~hyps:[id]) ~continuation:T.id_tac | _ -> assert false end | _ -> g () in PET.apply_tactic tactic status in PET.mk_tactic clear_term let exists context = function | C.Rel i -> List.nth context (pred i) <> None | _ -> true let recur_on_child_tac ~before ~after = let recur_on_child status = let (proof, goal) = status in let _, metasenv, _subst, _, _, _ = proof in let _, context, _ = CicUtil.lookup_meta goal metasenv in debug_print (lazy ("\nrecur_on_child")); debug_print (lazy ("nel contesto:\n" ^ CicPp.ppcontext context)); let mk_lterm term c m ug = let distance = List.length c - List.length context in S.lift distance term, m, ug in let lterm = mk_lterm (Cic.Rel 1) in let tactic = T.then_ ~start:before ~continuation:(after lterm) in PET.apply_tactic tactic status in PET.mk_tactic recur_on_child let injection_tac ~lterm ~i ~continuation ~recur = let give_name seed = function | C.Name _ as name -> name | C.Anonymous -> C.Name (incr seed; "y" ^ string_of_int !seed) in let rec mk_rels = function | 0 -> [] | n -> C.Rel n :: (mk_rels (n - 1)) in let injection_tac status = let (proof, goal) = status in (* precondizione: t1 e t2 hanno in testa lo stesso costruttore ma * differiscono (o potrebbero differire?) nell'i-esimo parametro * del costruttore *) let _,metasenv,_subst,_,_, _ = proof in let _,context,_ = CicUtil.lookup_meta goal metasenv in let term, metasenv, _ugraph = lterm context metasenv CU.oblivion_ugraph in let termty,_ = CTC.type_of_aux' metasenv context term CU.oblivion_ugraph in debug_print (lazy ("\ninjection su : " ^ pp context termty)); match termty with (* an equality *) | C.Appl [(C.MutInd (equri, 0, [])) ; tty ; t1 ; t2] when LibraryObjects.is_eq_URI equri -> let turi,typeno,ens,params = match tty with (* some inductive type *) | C.MutInd (turi,typeno,ens) -> turi,typeno,ens,[] | C.Appl (C.MutInd (turi,typeno,ens)::params) -> turi,typeno,ens,params | _ -> raise exn_noneqind in let t1',t2',consno = (* sono i due sottotermini che differiscono *) match t1,t2 with | C.Appl ((C.MutConstruct (uri1,typeno1,consno1,ens1))::applist1), C.Appl ((C.MutConstruct (uri2,typeno2,consno2,ens2))::applist2) when (uri1 = uri2) && (typeno1 = typeno2) && (consno1 = consno2) && (ens1 = ens2) -> (* controllo ridondante *) List.nth applist1 (pred i),List.nth applist2 (pred i),consno2 | _ -> assert false in let tty',_ = CTC.type_of_aux' metasenv context t1' CU.oblivion_ugraph in let patterns,outtype = match fst (CicEnvironment.get_obj CU.oblivion_ugraph turi) with | C.InductiveDefinition (ind_type_list,_,paramsno,_)-> let left_params, right_params = HExtlib.split_nth paramsno params in let _,_,_,constructor_list = List.nth ind_type_list typeno in let i_constr_id,_ = List.nth constructor_list (consno - 1) in let patterns = let seed = ref 0 in List.map (function (id,cty) -> let reduced_cty = CR.whd context cty in let rec aux k = function | C.Prod (_,_,tgt) when k <= paramsno -> let left = List.nth left_params (k-1) in aux (k+1) (S.subst left tgt) | C.Prod (binder,source,target) when k > paramsno -> let binder' = give_name seed binder in C.Lambda (binder',source,(aux (k+1) target)) | _ -> let nr_param_constr = k - paramsno - 1 in if id = i_constr_id then C.Rel (k - i) else S.lift nr_param_constr t1' (* + 1 per liftare anche il lambda aggiunto * esternamente al case *) in S.lift 1 (aux 1 reduced_cty)) constructor_list in (* this code should be taken from cases_tac *) let outtype = let seed = ref 0 in let rec to_lambdas te head = match CR.whd context te with | C.Prod (binder,so,ta) -> let binder' = give_name seed binder in C.Lambda (binder',so,to_lambdas ta head) | _ -> head in let rec skip_prods params te = match params, CR.whd context te with | [], _ -> te | left::tl, C.Prod (_,_,ta) -> skip_prods tl (S.subst left ta) | _, _ -> assert false in let abstracted_tty = let tty = List.fold_left (fun x y -> S.subst y x) tty left_params in (* non lift, ma subst coi left! *) match S.lift 1 tty with | C.MutInd _ as tty' -> tty' | C.Appl l -> let keep,abstract = HExtlib.split_nth (paramsno +1) l in let keep = List.map (S.lift paramsno) keep in C.Appl (keep@mk_rels (List.length abstract)) | _ -> assert false in match ind_type_list with | [] -> assert false | (_,_,ty,_)::_ -> (* this is in general wrong, do as in cases_tac *) to_lambdas (skip_prods left_params ty) (C.Lambda (C.Name "cased", abstracted_tty, (* here we should capture right parameters *) (* 1 for his Lambda, one for the Lambda outside the match * and then one for each to_lambda *) S.lift (2+List.length right_params) tty')) in patterns,outtype | _ -> raise exn_discrnonind in let cutted = C.Appl [C.MutInd (equri,0,[]) ; tty' ; t1' ; t2'] in let changed = C.Appl [ C.Lambda (C.Name "x", tty, C.MutCase (turi,typeno,outtype,C.Rel 1,patterns)) ; t1] in (* check if cutted and changed are well typed and if t1' ~ changed *) let go_on = try let _,g = CTC.type_of_aux' metasenv context cutted CU.oblivion_ugraph in let _,g = CTC.type_of_aux' metasenv context changed g in fst (CR.are_convertible ~metasenv context t1' changed g) with | CTC.TypeCheckerFailure _ -> false in if not go_on then begin HLog.warn "destruct: injection failed"; PET.apply_tactic continuation status end else let fill_cut_tac term = let fill_cut status = debug_print (lazy "riempio il cut"); let (proof, goal) = status in let _,metasenv,_subst,_,_, _ = proof in let _,context,gty = CicUtil.lookup_meta goal metasenv in let gty = Unshare.unshare gty in let new_t1' = match gty with | (C.Appl (C.MutInd (_,_,_)::_::t::_)) -> t | _ -> raise exn_injwronggoal in debug_print (lazy ("metto: " ^ pp context changed)); debug_print (lazy ("al posto di: " ^ pp context new_t1')); debug_print (lazy ("nel goal: " ^ pp context gty)); debug_print (lazy ("nel contesto:\n" ^ CicPp.ppcontext context)); debug_print (lazy ("e poi rewrite con: "^pp context term)); let tac = T.seq ~tactics:[ RT.change_tac ~pattern:(None, [], Some (PEH.pattern_of ~term:gty [new_t1'])) (fun _ m u -> changed,m,u); ET.rewrite_simpl_tac ~direction:`LeftToRight ~pattern:(PET.conclusion_pattern None) term []; ET.reflexivity_tac ] in PET.apply_tactic tac status in PET.mk_tactic fill_cut in debug_print (lazy ("CUT: " ^ pp context cutted)); let tactic = T.thens ~start: (P.cut_tac cutted) ~continuations:[ recur_on_child_tac continuation recur; fill_cut_tac term ] in PET.apply_tactic tactic status | _ -> raise exn_noneq in PET.mk_tactic injection_tac let subst_tac ~lterm ~direction ~where ~continuation ~recur = let subst_tac status = let (proof, goal) = status in let _,metasenv,_subst,_,_, _ = proof in let _,context,_ = CicUtil.lookup_meta goal metasenv in let term, metasenv, _ugraph = lterm context metasenv CU.oblivion_ugraph in debug_print (lazy ("\nsubst " ^ (match direction with `LeftToRight -> "->" | `RightToLeft -> "<-") ^ " di: " ^ pp context term)); let tactic = match where with | None -> debug_print (lazy ("nella conclusione")); let pattern = PET.conclusion_pattern None in let tactic = ET.rewrite_tac ~direction ~pattern term [] in T.then_ ~start:(T.try_tactic ~tactic) ~continuation | Some name -> debug_print (lazy ("nella premessa: " ^ name)); let pattern = None, [name, PET.hole], None in let start = ET.rewrite_tac ~direction ~pattern term [] in let ok_tactic = recur_on_child_tac continuation recur in T.if_ ~start ~continuation:ok_tactic ~fail:continuation in PET.apply_tactic tactic status in PET.mk_tactic subst_tac let rec destruct ~first_time lterm = let are_convertible hd1 hd2 metasenv context = fst (CR.are_convertible ~metasenv context hd1 hd2 CU.oblivion_ugraph) in let recur = destruct ~first_time:false in let destruct status = let (proof, goal) = status in let _,metasenv,_subst, _,_, _ = proof in let _,context,_ = CicUtil.lookup_meta goal metasenv in let term, metasenv, _ugraph = lterm context metasenv CU.oblivion_ugraph in let tactic = if not (first_time || exists context term) then T.id_tac else begin debug_print (lazy ("\ndestruct di: " ^ pp context term)); debug_print (lazy ("nel contesto:\n" ^ CicPp.ppcontext context)); let termty,_ = CTC.type_of_aux' metasenv context term CU.oblivion_ugraph in debug_print (lazy ("\ndestruct su: " ^ pp context termty)); let mk_lterm term c m ug = let distance = List.length c - List.length context in S.lift distance term, m, ug in let lterm = mk_lterm term in let mk_subst_chain direction index with_what what = let k = match term with C.Rel i -> i | _ -> -1 in let rec traverse_context first_time j = function | [] -> let continuation = T.seq ~tactics:[ clear_term first_time lterm; clear_term false (mk_lterm what); clear_term false (mk_lterm with_what) ] in subst_tac ~direction ~lterm ~where:None ~continuation ~recur | Some (C.Name name, _) :: tl when j < index && j <> k -> debug_print (lazy ("\nsubst programmata: cosa: " ^ string_of_int index ^ ", dove: " ^ string_of_int j)); subst_tac ~direction ~lterm ~where:(Some name) ~recur ~continuation:(traverse_context false (succ j) tl) | _ :: tl -> traverse_context first_time (succ j) tl in traverse_context first_time 1 context in match termty with | C.Appl [(C.MutInd (equri, 0, [])) ; tty ; t1 ; t2] when LibraryObjects.is_eq_URI equri -> begin match t1,t2 with (* injection part *) | C.MutConstruct _, C.MutConstruct _ when t1 = t2 -> clear_term first_time lterm | C.Appl (C.MutConstruct _ as mc1 :: applist1), C.Appl (C.MutConstruct _ as mc2 :: applist2) when mc1 = mc2 -> let rec traverse_list first_time i l1 l2 = match l1, l2 with | [], [] -> clear_term first_time lterm | hd1 :: tl1, hd2 :: tl2 -> if are_convertible hd1 hd2 metasenv context then traverse_list first_time (succ i) tl1 tl2 else injection_tac ~i ~lterm ~recur ~continuation: (traverse_list false (succ i) tl1 tl2) | _ -> assert false (* i 2 termini hanno in testa lo stesso costruttore, * ma applicato a un numero diverso di termini *) in traverse_list first_time 1 applist1 applist2 (* discriminate part *) | C.MutConstruct (_,_,consno1,ens1), C.MutConstruct (_,_,consno2,ens2) | C.MutConstruct (_,_,consno1,ens1), C.Appl ((C.MutConstruct (_,_,consno2,ens2))::_) | C.Appl ((C.MutConstruct (_,_,consno1,ens1))::_), C.MutConstruct (_,_,consno2,ens2) | C.Appl ((C.MutConstruct (_,_,consno1,ens1))::_), C.Appl ((C.MutConstruct (_,_,consno2,ens2))::_) when (consno1 <> consno2) || (ens1 <> ens2) -> discriminate_tac ~term (* subst part *) | C.Rel _, C.Rel _ when t1 = t2 -> T.seq ~tactics:[ clear_term first_time lterm; clear_term false (mk_lterm t1) ] | C.Rel i1, C.Rel i2 when i1 < i2 -> mk_subst_chain `LeftToRight i1 t2 t1 | C.Rel i1, C.Rel i2 when i1 > i2 -> mk_subst_chain `RightToLeft i2 t1 t2 | C.Rel i1, _ when DTI.does_not_occur i1 t2 -> mk_subst_chain `LeftToRight i1 t2 t1 | _, C.Rel i2 when DTI.does_not_occur i2 t1 -> mk_subst_chain `RightToLeft i2 t1 t2 (* else part *) | _ when first_time -> raise exn_nothingtodo | _ (* when not first time *) -> T.id_tac end | _ when first_time -> raise exn_nothingtodo | _ (* when not first time *) -> T.id_tac end in PET.apply_tactic tactic status in PET.mk_tactic destruct (* destruct performs either injection or discriminate or subst *) let destruct_tac xterms = let destruct status = let (proof, goal) = status in let _,metasenv,_subst,_,_, _ = proof in let _,context,_ = CicUtil.lookup_meta goal metasenv in let mk_lterm term c m ug = let distance = List.length c - List.length context in S.lift distance term, m, ug in let tactics = match xterms with | Some terms -> let map term = destruct ~first_time:false (mk_lterm term) in List.map map terms | None -> let rec mk_tactics first_time i tacs = function | [] -> List.rev tacs | Some _ :: tl -> let lterm = mk_lterm (C.Rel i) in let tacs = destruct ~first_time lterm :: tacs in mk_tactics false (succ i) tacs tl | _ :: tl -> mk_tactics first_time (succ i) tacs tl in mk_tactics false 1 [] context in PET.apply_tactic (T.seq ~tactics) status in PET.mk_tactic destruct