(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) (* $Id$ *) module C = Cic module I = CicInspect module S = CicSubstitution module TC = CicTypeChecker module P = PrimitiveTactics module T = Tacticals module PESR = ProofEngineStructuralRules module F = FreshNamesGenerator module PET = ProofEngineTypes module RT = ReductionTactics module E = CicEnvironment module R = CicReduction module Un = CicUniv module PEH = ProofEngineHelpers let premise_pattern what = None, [what, C.Implicit (Some `Hole)], None let get_inductive_def uri = match E.get_obj Un.oblivion_ugraph uri with | C.InductiveDefinition (tys, _, lpsno, _), _ -> lpsno, tys | _ -> assert false let is_not_recursive uri tyno tys = let map mutinds (_, ty) = (* FG: we can do much better here *) let map mutinds (_, t) = I.S.union mutinds (I.get_mutinds_of_uri uri t) in (**********************************) let premises, _ = PEH.split_with_whd ([], ty) in List.fold_left map mutinds (List.tl premises) in let msg = "recursiveness check non implemented for mutually inductive types" in if List.length tys > 1 then raise (PET.Fail (lazy msg)) else let _, _, _, constructors = List.nth tys tyno in let mutinds = List.fold_left map I.S.empty constructors in I.S.is_empty mutinds let rec check_type sorts metasenv context t = match R.whd ~delta:true context t with | C.MutInd (uri, tyno, _) as t -> let lpsno, tys = get_inductive_def uri in let _, inductive, arity, _ = List.nth tys tyno in let _, psno = PEH.split_with_whd ([], arity) in let not_relation = (lpsno = psno) in let not_recursive = is_not_recursive uri tyno tys in let ty_ty, _ = TC.type_of_aux' metasenv context t Un.oblivion_ugraph in let sort = match PEH.split_with_whd (context, ty_ty) with | (_, C.Sort sort) ::_ , _ -> CicPp.ppsort sort | (_, C.Meta _) :: _, _ -> CicPp.ppsort (C.Type (Un.fresh ())) | _ -> assert false in let right_sort = List.mem sort sorts in if not_relation && inductive && not_recursive && right_sort then begin HLog.warn (Printf.sprintf "Decomposing %s %u" (UriManager.string_of_uri uri) (succ tyno)); true end else false | C.Appl (hd :: tl) -> check_type sorts metasenv context hd | _ -> false (* unexported tactics *******************************************************) let rec scan_tac ~old_context_length ~index ~tactic = let scan_tac status = let (proof, goal) = status in let _, metasenv, _subst, _, _, _ = proof in let _, context, _ = CicUtil.lookup_meta goal metasenv in let context_length = List.length context in let rec aux index = match PEH.get_name context index with | _ when index <= 0 -> (proof, [goal]) | None -> aux (pred index) | Some what -> let tac = T.then_ ~start:(tactic ~what) ~continuation:(scan_tac ~old_context_length:context_length ~index ~tactic) in try PET.apply_tactic tac status with PET.Fail _ -> aux (pred index) in aux (index + context_length - old_context_length) in PET.mk_tactic scan_tac let elim_clear_unfold_tac ~sorts ~mk_fresh_name_callback ~what = let elim_clear_unfold_tac status = let (proof, goal) = status in let _, metasenv, _subst, _, _, _ = proof in let _, context, _ = CicUtil.lookup_meta goal metasenv in let index, ty = PEH.lookup_type metasenv context what in let tac = if check_type sorts metasenv context (S.lift index ty) then T.then_ ~start:(P.elim_intros_tac ~mk_fresh_name_callback (C.Rel index)) ~continuation:(PESR.clear [what]) else let msg = "unexported elim_clear: not an decomposable type" in raise (PET.Fail (lazy msg)) in PET.apply_tactic tac status in PET.mk_tactic elim_clear_unfold_tac (* elim type ****************************************************************) let elim_type_tac ?(mk_fresh_name_callback = F.mk_fresh_name ~subst:[]) ?depth ?using what = let elim = P.elim_intros_simpl_tac ?using ?depth ~mk_fresh_name_callback in let elim_type_tac status = let tac = T.thens ~start: (P.cut_tac what) ~continuations:[elim (C.Rel 1); T.id_tac] in PET.apply_tactic tac status in PET.mk_tactic elim_type_tac (* decompose ****************************************************************) (* robaglia --------------------------------------------------------------- *) (** perform debugging output? *) let debug = false let debug_print = fun _ -> () (** debugging print *) let warn s = debug_print (lazy ("DECOMPOSE: " ^ (Lazy.force s))) (* roba seria ------------------------------------------------------------- *) let decompose_tac ?(sorts=[CicPp.ppsort C.Prop; CicPp.ppsort C.CProp]) ?(mk_fresh_name_callback = F.mk_fresh_name ~subst:[]) () = let decompose_tac status = let (proof, goal) = status in let _, metasenv, _subst, _,_, _ = proof in let _, context, _ = CicUtil.lookup_meta goal metasenv in let tactic = elim_clear_unfold_tac ~sorts ~mk_fresh_name_callback in let old_context_length = List.length context in let tac = scan_tac ~old_context_length ~index:old_context_length ~tactic in PET.apply_tactic tac status in PET.mk_tactic decompose_tac