(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) (* $Id$ *) module C = Cic module U = UriManager module PET = ProofEngineTypes module PER = ProofEngineReduction module PEH = ProofEngineHelpers module PESR = ProofEngineStructuralRules module P = PrimitiveTactics module T = Tacticals module R = CicReduction module S = CicSubstitution module TC = CicTypeChecker module LO = LibraryObjects module DTI = DoubleTypeInference module HEL = HExtlib let rec rewrite_tac ~direction ~pattern:(wanted,hyps_pat,concl_pat) equality = let _rewrite_tac status = assert (wanted = None); (* this should be checked syntactically *) let proof,goal = status in let curi, metasenv, _subst, pbo, pty, attrs = proof in let (metano,context,gty) = CicUtil.lookup_meta goal metasenv in let gsort,_ = CicTypeChecker.type_of_aux' metasenv context gty CicUniv.oblivion_ugraph in match hyps_pat with he::(_::_ as tl) -> PET.apply_tactic (T.then_ (rewrite_tac ~direction ~pattern:(None,[he],None) equality) (rewrite_tac ~direction ~pattern:(None,tl,concl_pat) (S.lift 1 equality)) ) status | [_] as hyps_pat when concl_pat <> None -> PET.apply_tactic (T.then_ (rewrite_tac ~direction ~pattern:(None,hyps_pat,None) equality) (rewrite_tac ~direction ~pattern:(None,[],concl_pat) (S.lift 1 equality)) ) status | _ -> let arg,dir2,tac,concl_pat,gty = match hyps_pat with [] -> None,true,(fun ~term _ -> P.exact_tac term),concl_pat,gty | [name,pat] -> let rec find_hyp n = function [] -> assert false | Some (Cic.Name s,Cic.Decl ty)::_ when name = s -> Cic.Rel n, S.lift n ty | Some (Cic.Name s,Cic.Def _)::_ when name = s -> assert false (*CSC: not implemented yet! But does this make any sense?*) | _::tl -> find_hyp (n+1) tl in let arg,gty = find_hyp 1 context in let dummy = "dummy" in Some arg,false, (fun ~term typ -> T.seq ~tactics: [PESR.rename [name] [dummy]; P.letin_tac ~mk_fresh_name_callback:(fun _ _ _ ~typ -> Cic.Name name) term; PESR.clearbody name; ReductionTactics.change_tac ~pattern: (None,[name,Cic.Implicit (Some `Hole)], None) (ProofEngineTypes.const_lazy_term typ); PESR.clear [dummy] ]), Some pat,gty | _::_ -> assert false in let if_right_to_left do_not_change a b = match direction with | `RightToLeft -> if do_not_change then a else b | `LeftToRight -> if do_not_change then b else a in let ty_eq,ugraph = CicTypeChecker.type_of_aux' metasenv context equality CicUniv.oblivion_ugraph in let (ty_eq,metasenv',arguments,fresh_meta) = TermUtil.saturate_term (ProofEngineHelpers.new_meta_of_proof proof) metasenv context ty_eq 0 in let equality = if List.length arguments = 0 then equality else C.Appl (equality :: arguments) in (* t1x is t2 if we are rewriting in an hypothesis *) let eq_ind, ty, t1, t2, t1x = match ty_eq with | C.Appl [C.MutInd (uri, 0, []); ty; t1; t2] when LibraryObjects.is_eq_URI uri -> let ind_uri = match gsort with C.Sort C.Prop -> if_right_to_left dir2 LibraryObjects.eq_ind_URI LibraryObjects.eq_ind_r_URI | C.Sort C.Set -> if_right_to_left dir2 LibraryObjects.eq_rec_URI LibraryObjects.eq_rec_r_URI | _ -> if_right_to_left dir2 LibraryObjects.eq_rect_URI LibraryObjects.eq_rect_r_URI in let eq_ind = C.Const (ind_uri uri,[]) in if dir2 then if_right_to_left true (eq_ind,ty,t2,t1,t2) (eq_ind,ty,t1,t2,t1) else if_right_to_left true (eq_ind,ty,t1,t2,t2) (eq_ind,ty,t2,t1,t1) | _ -> raise (PET.Fail (lazy "Rewrite: argument is not a proof of an equality")) in (* now we always do as if direction was `LeftToRight *) let fresh_name = FreshNamesGenerator.mk_fresh_name ~subst:[] metasenv' context C.Anonymous ~typ:ty in let lifted_t1 = S.lift 1 t1x in let lifted_gty = S.lift 1 gty in let lifted_conjecture = metano,(Some (fresh_name,Cic.Decl ty))::context,lifted_gty in let lifted_pattern = let lifted_concl_pat = match concl_pat with | None -> None | Some term -> Some (S.lift 1 term) in Some (fun c m u -> let distance = pred (List.length c - List.length context) in S.lift distance lifted_t1, m, u),[],lifted_concl_pat in let subst,metasenv',ugraph,_,selected_terms_with_context = ProofEngineHelpers.select ~metasenv:metasenv' ~ugraph ~conjecture:lifted_conjecture ~pattern:lifted_pattern in let metasenv' = CicMetaSubst.apply_subst_metasenv subst metasenv' in let what,with_what = (* Note: Rel 1 does not live in the context context_of_t *) (* The replace_lifting_csc 0 function will take care of lifting it *) (* to context_of_t *) List.fold_right (fun (context_of_t,t) (l1,l2) -> t::l1, Cic.Rel 1::l2) selected_terms_with_context ([],[]) in let t1 = CicMetaSubst.apply_subst subst t1 in let t2 = CicMetaSubst.apply_subst subst t2 in let ty = CicMetaSubst.apply_subst subst ty in let pbo = CicMetaSubst.apply_subst subst pbo in let pty = CicMetaSubst.apply_subst subst pty in let equality = CicMetaSubst.apply_subst subst equality in let abstr_gty = ProofEngineReduction.replace_lifting_csc 0 ~equality:(==) ~what ~with_what:with_what ~where:lifted_gty in if lifted_gty = abstr_gty then raise (ProofEngineTypes.Fail (lazy "nothing to do")); let abstr_gty = CicMetaSubst.apply_subst subst abstr_gty in let pred = C.Lambda (fresh_name, ty, abstr_gty) in (* The argument is either a meta if we are rewriting in the conclusion or the hypothesis if we are rewriting in an hypothesis *) let metasenv',arg,newtyp = match arg with None -> let gty' = S.subst t2 abstr_gty in let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let metasenv' = (fresh_meta,context,gty')::metasenv' in metasenv', C.Meta (fresh_meta,irl), Cic.Rel (-1) (* dummy term, never used *) | Some arg -> let gty' = S.subst t1 abstr_gty in metasenv',arg,gty' in let exact_proof = C.Appl [eq_ind ; ty ; t2 ; pred ; arg ; t1 ;equality] in try let (proof',goals) = PET.apply_tactic (tac ~term:exact_proof newtyp) ((curi,metasenv',_subst,pbo,pty, attrs),goal) in let goals = goals@(ProofEngineHelpers.compare_metasenvs ~oldmetasenv:metasenv ~newmetasenv:metasenv') in (proof',goals) with (* FG: this should be PET.Fail _ *) TC.TypeCheckerFailure _ -> let msg = lazy "rewrite: nothing to rewrite" in raise (PET.Fail msg) in PET.mk_tactic _rewrite_tac let rewrite_tac ~direction ~pattern equality names = let _, hyps_pat, _ = pattern in let froms = List.map fst hyps_pat in let start = rewrite_tac ~direction ~pattern equality in let continuation = PESR.rename ~froms ~tos:names in if names = [] then start else T.then_ ~start ~continuation let rewrite_simpl_tac ~direction ~pattern equality names = T.then_ ~start:(rewrite_tac ~direction ~pattern equality names) ~continuation: (ReductionTactics.simpl_tac ~pattern:(ProofEngineTypes.conclusion_pattern None)) let replace_tac ~(pattern: ProofEngineTypes.lazy_pattern) ~with_what = let replace_tac ~(pattern: ProofEngineTypes.lazy_pattern) ~with_what status = let _wanted, hyps_pat, concl_pat = pattern in let (proof, goal) = status in let uri,metasenv,_subst,pbo,pty, attrs = proof in let (_,context,ty) as conjecture = CicUtil.lookup_meta goal metasenv in assert (hyps_pat = []); (*CSC: not implemented yet *) let eq_URI = match LibraryObjects.eq_URI () with Some uri -> uri | None -> raise (ProofEngineTypes.Fail (lazy "You need to register the default equality first. Please use the \"default\" command")) in let context_len = List.length context in let subst,metasenv,u,_,selected_terms_with_context = ProofEngineHelpers.select ~metasenv ~ugraph:CicUniv.oblivion_ugraph ~conjecture ~pattern in let metasenv = CicMetaSubst.apply_subst_metasenv subst metasenv in let with_what, metasenv, u = with_what context metasenv u in let with_what = CicMetaSubst.apply_subst subst with_what in let pbo = CicMetaSubst.apply_subst subst pbo in let pty = CicMetaSubst.apply_subst subst pty in let status = (uri,metasenv,_subst,pbo,pty, attrs),goal in let ty_of_with_what,u = CicTypeChecker.type_of_aux' metasenv context with_what CicUniv.oblivion_ugraph in let whats = match selected_terms_with_context with [] -> raise (ProofEngineTypes.Fail (lazy "Replace: no term selected")) | l -> List.map (fun (context_of_t,t) -> let t_in_context = try let context_of_t_len = List.length context_of_t in if context_of_t_len = context_len then t else (let t_in_context,subst,metasenv' = CicMetaSubst.delift_rels [] metasenv (context_of_t_len - context_len) t in assert (subst = []); assert (metasenv = metasenv'); t_in_context) with CicMetaSubst.DeliftingARelWouldCaptureAFreeVariable -> (*CSC: we could implement something stronger by completely changing the semantics of the tactic *) raise (ProofEngineTypes.Fail (lazy "Replace: one of the selected terms is not closed")) in let ty_of_t_in_context,u = (* TASSI: FIXME *) CicTypeChecker.type_of_aux' metasenv context t_in_context CicUniv.oblivion_ugraph in let b,u = CicReduction.are_convertible ~metasenv context ty_of_with_what ty_of_t_in_context u in if b then let concl_pat_for_t = ProofEngineHelpers.pattern_of ~term:ty [t] in let pattern_for_t = None,[],Some concl_pat_for_t in t_in_context,pattern_for_t else raise (ProofEngineTypes.Fail (lazy "Replace: one of the selected terms and the term to be replaced with have not convertible types")) ) l in let rec aux n whats (status : ProofEngineTypes.status) = match whats with [] -> ProofEngineTypes.apply_tactic T.id_tac status | (what,lazy_pattern)::tl -> let what = S.lift n what in let with_what = S.lift n with_what in let ty_of_with_what = S.lift n ty_of_with_what in ProofEngineTypes.apply_tactic (T.thens ~start:( P.cut_tac (C.Appl [ (C.MutInd (eq_URI, 0, [])) ; ty_of_with_what ; what ; with_what])) ~continuations:[ T.then_ ~start:( rewrite_tac ~direction:`LeftToRight ~pattern:lazy_pattern (C.Rel 1) []) ~continuation:( T.then_ ~start:( ProofEngineTypes.mk_tactic (function ((proof,goal) as status) -> let _,metasenv,_subst,_,_, _ = proof in let _,context,_ = CicUtil.lookup_meta goal metasenv in let hyps = try match List.hd context with Some (Cic.Name name,_) -> [name] | _ -> assert false with (Failure "hd") -> assert false in ProofEngineTypes.apply_tactic (PESR.clear ~hyps) status)) ~continuation:(aux_tac (n + 1) tl)); T.id_tac]) status and aux_tac n tl = ProofEngineTypes.mk_tactic (aux n tl) in aux 0 whats (status : ProofEngineTypes.status) in ProofEngineTypes.mk_tactic (replace_tac ~pattern ~with_what) ;; (* All these tacs do is applying the right constructor/theorem *) let reflexivity_tac = IntroductionTactics.constructor_tac ~n:1 ;; let symmetry_tac = let symmetry_tac (proof, goal) = let (_,metasenv,_subst,_,_, _) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in match (R.whd context ty) with (C.Appl [(C.MutInd (uri, 0, [])); _; _; _]) when LibraryObjects.is_eq_URI uri -> ProofEngineTypes.apply_tactic (PrimitiveTactics.apply_tac ~term: (C.Const (LibraryObjects.sym_eq_URI uri, []))) (proof,goal) | _ -> raise (ProofEngineTypes.Fail (lazy "Symmetry failed")) in ProofEngineTypes.mk_tactic symmetry_tac ;; let transitivity_tac ~term = let transitivity_tac ~term status = let (proof, goal) = status in let (_,metasenv,_subst,_,_, _) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in match (R.whd context ty) with (C.Appl [(C.MutInd (uri, 0, [])); _; _; _]) when LibraryObjects.is_eq_URI uri -> ProofEngineTypes.apply_tactic (T.thens ~start:(PrimitiveTactics.apply_tac ~term: (C.Const (LibraryObjects.trans_eq_URI uri, []))) ~continuations: [PrimitiveTactics.exact_tac ~term ; T.id_tac ; T.id_tac]) status | _ -> raise (ProofEngineTypes.Fail (lazy "Transitivity failed")) in ProofEngineTypes.mk_tactic (transitivity_tac ~term) ;;