(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) (* $Id$ *) exception TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple exception NotAnInductiveTypeToEliminate exception WrongUriToVariable of string exception NotAnEliminator module PET = ProofEngineTypes (* lambda_abstract newmeta ty *) (* returns a triple [bo],[context],[ty'] where *) (* [ty] = Pi/LetIn [context].[ty'] ([context] is a vector!) *) (* and [bo] = Lambda/LetIn [context].(Meta [newmeta]) *) (* So, lambda_abstract is the core of the implementation of *) (* the Intros tactic. *) (* howmany = -1 means Intros, howmany > 0 means Intros n *) let lambda_abstract ?(howmany=(-1)) metasenv context newmeta ty mk_fresh_name = let module C = Cic in let rec collect_context context howmany do_whd ty = match howmany with | 0 -> let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in context, ty, (C.Meta (newmeta,irl)) | _ -> match ty with C.Cast (te,_) -> collect_context context howmany do_whd te | C.Prod (n,s,t) -> let n' = mk_fresh_name metasenv context n ~typ:s in let (context',ty,bo) = let entry = match n' with | C.Name _ -> Some (n',(C.Decl s)) | C.Anonymous -> None in let ctx = entry :: context in collect_context ctx (howmany - 1) do_whd t in (context',ty,C.Lambda(n',s,bo)) | C.LetIn (n,s,sty,t) -> let (context',ty,bo) = collect_context ((Some (n,(C.Def (s,sty))))::context) (howmany - 1) do_whd t in (context',ty,C.LetIn(n,s,sty,bo)) | _ as t -> if howmany <= 0 then let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in context, t, (C.Meta (newmeta,irl)) else if do_whd then let t = CicReduction.whd ~delta:true context t in collect_context context howmany false t else raise (PET.Fail (lazy "intro(s): not enough products or let-ins")) in collect_context context howmany true ty let eta_expand metasenv context t arg = let module T = CicTypeChecker in let module S = CicSubstitution in let module C = Cic in let rec aux n = function t' when t' = S.lift n arg -> C.Rel (1 + n) | C.Rel m -> if m <= n then C.Rel m else C.Rel (m+1) | C.Var (uri,exp_named_subst) -> let exp_named_subst' = aux_exp_named_subst n exp_named_subst in C.Var (uri,exp_named_subst') | C.Meta (i,l) -> let l' = List.map (function None -> None | Some t -> Some (aux n t)) l in C.Meta (i, l') | C.Sort _ | C.Implicit _ as t -> t | C.Cast (te,ty) -> C.Cast (aux n te, aux n ty) | C.Prod (nn,s,t) -> C.Prod (nn, aux n s, aux (n+1) t) | C.Lambda (nn,s,t) -> C.Lambda (nn, aux n s, aux (n+1) t) | C.LetIn (nn,s,ty,t) -> C.LetIn (nn, aux n s, aux n ty, aux (n+1) t) | C.Appl l -> C.Appl (List.map (aux n) l) | C.Const (uri,exp_named_subst) -> let exp_named_subst' = aux_exp_named_subst n exp_named_subst in C.Const (uri,exp_named_subst') | C.MutInd (uri,i,exp_named_subst) -> let exp_named_subst' = aux_exp_named_subst n exp_named_subst in C.MutInd (uri,i,exp_named_subst') | C.MutConstruct (uri,i,j,exp_named_subst) -> let exp_named_subst' = aux_exp_named_subst n exp_named_subst in C.MutConstruct (uri,i,j,exp_named_subst') | C.MutCase (sp,i,outt,t,pl) -> C.MutCase (sp,i,aux n outt, aux n t, List.map (aux n) pl) | C.Fix (i,fl) -> let tylen = List.length fl in let substitutedfl = List.map (fun (name,i,ty,bo) -> (name, i, aux n ty, aux (n+tylen) bo)) fl in C.Fix (i, substitutedfl) | C.CoFix (i,fl) -> let tylen = List.length fl in let substitutedfl = List.map (fun (name,ty,bo) -> (name, aux n ty, aux (n+tylen) bo)) fl in C.CoFix (i, substitutedfl) and aux_exp_named_subst n = List.map (function uri,t -> uri,aux n t) in let argty,_ = T.type_of_aux' metasenv context arg CicUniv.oblivion_ugraph (* TASSI: FIXME *) in let fresh_name = FreshNamesGenerator.mk_fresh_name ~subst:[] metasenv context (Cic.Name "Heta") ~typ:argty in (C.Appl [C.Lambda (fresh_name,argty,aux 0 t) ; arg]) (*CSC: ma serve solamente la prima delle new_uninst e l'unione delle due!!! *) let classify_metas newmeta in_subst_domain subst_in metasenv = List.fold_right (fun (i,canonical_context,ty) (old_uninst,new_uninst) -> if in_subst_domain i then old_uninst,new_uninst else let ty' = subst_in canonical_context ty in let canonical_context' = List.fold_right (fun entry canonical_context' -> let entry' = match entry with Some (n,Cic.Decl s) -> Some (n,Cic.Decl (subst_in canonical_context' s)) | None -> None | Some (n,Cic.Def (bo,ty)) -> Some (n, Cic.Def (subst_in canonical_context' bo, subst_in canonical_context' ty)) in entry'::canonical_context' ) canonical_context [] in if i < newmeta then ((i,canonical_context',ty')::old_uninst),new_uninst else old_uninst,((i,canonical_context',ty')::new_uninst) ) metasenv ([],[]) (* Useful only inside apply_tac *) let generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst = let module C = Cic in let params = let o,_ = CicEnvironment.get_obj CicUniv.oblivion_ugraph uri in CicUtil.params_of_obj o in let exp_named_subst_diff,new_fresh_meta,newmetasenvfragment,exp_named_subst'= let next_fresh_meta = ref newmeta in let newmetasenvfragment = ref [] in let exp_named_subst_diff = ref [] in let rec aux = function [],[] -> [] | uri::tl,[] -> let ty = let o,_ = CicEnvironment.get_obj CicUniv.oblivion_ugraph uri in match o with C.Variable (_,_,ty,_,_) -> CicSubstitution.subst_vars !exp_named_subst_diff ty | _ -> raise (WrongUriToVariable (UriManager.string_of_uri uri)) in (* CSC: patch to generate ?1 : ?2 : Type in place of ?1 : Type to simulate ?1 :< Type (match ty with C.Sort (C.Type _) as s -> (* TASSI: ?? *) let fresh_meta = !next_fresh_meta in let fresh_meta' = fresh_meta + 1 in next_fresh_meta := !next_fresh_meta + 2 ; let subst_item = uri,C.Meta (fresh_meta',[]) in newmetasenvfragment := (fresh_meta,[],C.Sort (C.Type (CicUniv.fresh()))) :: (* TASSI: ?? *) (fresh_meta',[],C.Meta (fresh_meta,[])) :: !newmetasenvfragment ; exp_named_subst_diff := !exp_named_subst_diff @ [subst_item] ; subst_item::(aux (tl,[])) | _ -> *) let irl = CicMkImplicit.identity_relocation_list_for_metavariable context in let subst_item = uri,C.Meta (!next_fresh_meta,irl) in newmetasenvfragment := (!next_fresh_meta,context,ty)::!newmetasenvfragment ; exp_named_subst_diff := !exp_named_subst_diff @ [subst_item] ; incr next_fresh_meta ; subst_item::(aux (tl,[]))(*)*) | uri::tl1,((uri',_) as s)::tl2 -> assert (UriManager.eq uri uri') ; s::(aux (tl1,tl2)) | [],_ -> assert false in let exp_named_subst' = aux (params,exp_named_subst) in !exp_named_subst_diff,!next_fresh_meta, List.rev !newmetasenvfragment, exp_named_subst' in new_fresh_meta,newmetasenvfragment,exp_named_subst',exp_named_subst_diff ;; let new_metasenv_and_unify_and_t newmeta' metasenv' subst context term' ty termty goal_arity = let (consthead,newmetasenv,arguments,_) = TermUtil.saturate_term newmeta' metasenv' context termty goal_arity in let subst,newmetasenv',_ = CicUnification.fo_unif_subst subst context newmetasenv consthead ty CicUniv.oblivion_ugraph in let t = if List.length arguments = 0 then term' else Cic.Appl (term'::arguments) in subst,newmetasenv',t let rec count_prods context ty = match CicReduction.whd context ty with Cic.Prod (n,s,t) -> 1 + count_prods (Some (n,Cic.Decl s)::context) t | _ -> 0 let apply_with_subst ~term ~subst ~maxmeta (proof, goal) = (* Assumption: The term "term" must be closed in the current context *) let module T = CicTypeChecker in let module R = CicReduction in let module C = Cic in let (_,metasenv,_subst,_,_, _) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let newmeta = max (CicMkImplicit.new_meta metasenv subst) maxmeta in let exp_named_subst_diff,newmeta',newmetasenvfragment,term' = match term with C.Var (uri,exp_named_subst) -> let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff = generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst in exp_named_subst_diff,newmeta',newmetasenvfragment, C.Var (uri,exp_named_subst') | C.Const (uri,exp_named_subst) -> let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff = generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst in exp_named_subst_diff,newmeta',newmetasenvfragment, C.Const (uri,exp_named_subst') | C.MutInd (uri,tyno,exp_named_subst) -> let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff = generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst in exp_named_subst_diff,newmeta',newmetasenvfragment, C.MutInd (uri,tyno,exp_named_subst') | C.MutConstruct (uri,tyno,consno,exp_named_subst) -> let newmeta',newmetasenvfragment,exp_named_subst',exp_named_subst_diff = generalize_exp_named_subst_with_fresh_metas context newmeta uri exp_named_subst in exp_named_subst_diff,newmeta',newmetasenvfragment, C.MutConstruct (uri,tyno,consno,exp_named_subst') | _ -> [],newmeta,[],term in let metasenv' = metasenv@newmetasenvfragment in let termty,_ = CicTypeChecker.type_of_aux' metasenv' context term' CicUniv.oblivion_ugraph in let termty = CicSubstitution.subst_vars exp_named_subst_diff termty in let goal_arity = count_prods context ty in let subst,newmetasenv',t = let rec add_one_argument n = try new_metasenv_and_unify_and_t newmeta' metasenv' subst context term' ty termty n with CicUnification.UnificationFailure _ when n > 0 -> add_one_argument (n - 1) in add_one_argument goal_arity in let in_subst_domain i = List.exists (function (j,_) -> i=j) subst in let apply_subst = CicMetaSubst.apply_subst subst in let old_uninstantiatedmetas,new_uninstantiatedmetas = (* subst_in doesn't need the context. Hence the underscore. *) let subst_in _ = CicMetaSubst.apply_subst subst in classify_metas newmeta in_subst_domain subst_in newmetasenv' in let bo' = apply_subst t in let newmetasenv'' = new_uninstantiatedmetas@old_uninstantiatedmetas in let subst_in = (* if we just apply the subtitution, the type is irrelevant: we may use Implicit, since it will be dropped *) ((metano,(context,bo',Cic.Implicit None))::subst) in let (newproof, newmetasenv''') = ProofEngineHelpers.subst_meta_and_metasenv_in_proof proof metano subst_in newmetasenv'' in let subst = ((metano,(context,bo',ty))::subst) in subst, (newproof, List.map (function (i,_,_) -> i) new_uninstantiatedmetas), max maxmeta (CicMkImplicit.new_meta newmetasenv''' subst) (* ALB *) let apply_with_subst ~term ?(subst=[]) ?(maxmeta=0) status = try (* apply_tac_verbose ~term status *) apply_with_subst ~term ~subst ~maxmeta status (* TODO cacciare anche altre eccezioni? *) with | CicUnification.UnificationFailure msg | CicTypeChecker.TypeCheckerFailure msg -> raise (PET.Fail msg) (* ALB *) let apply_tac_verbose ~term status = let subst, status, _ = apply_with_subst ~term status in (CicMetaSubst.apply_subst subst), status let apply_tac ~term status = snd (apply_tac_verbose ~term status) (* TODO per implementare i tatticali e' necessario che tutte le tattiche sollevino _solamente_ Fail *) let apply_tac ~term = let apply_tac ~term status = try apply_tac ~term status (* TODO cacciare anche altre eccezioni? *) with | CicUnification.UnificationFailure msg | CicTypeChecker.TypeCheckerFailure msg -> raise (PET.Fail msg) in PET.mk_tactic (apply_tac ~term) let intros_tac ?howmany ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) ()= let intros_tac (proof, goal) = let module C = Cic in let module R = CicReduction in let (_,metasenv,_subst,_,_, _) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let newmeta = ProofEngineHelpers.new_meta_of_proof ~proof in let (context',ty',bo') = lambda_abstract ?howmany metasenv context newmeta ty mk_fresh_name_callback in let (newproof, _) = ProofEngineHelpers.subst_meta_in_proof proof metano bo' [newmeta,context',ty'] in (newproof, [newmeta]) in PET.mk_tactic intros_tac let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term = let cut_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term (proof, goal) = let module C = Cic in let curi,metasenv,_subst,pbo,pty, attrs = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let newmeta1 = ProofEngineHelpers.new_meta_of_proof ~proof in let newmeta2 = newmeta1 + 1 in let fresh_name = mk_fresh_name_callback metasenv context (Cic.Name "Hcut") ~typ:term in let context_for_newmeta1 = (Some (fresh_name,C.Decl term))::context in let irl1 = CicMkImplicit.identity_relocation_list_for_metavariable context_for_newmeta1 in let irl2 = CicMkImplicit.identity_relocation_list_for_metavariable context in let newmeta1ty = CicSubstitution.lift 1 ty in let bo' = Cic.LetIn (fresh_name, C.Meta (newmeta2,irl2), term, C.Meta (newmeta1,irl1)) in let (newproof, _) = ProofEngineHelpers.subst_meta_in_proof proof metano bo' [newmeta2,context,term; newmeta1,context_for_newmeta1,newmeta1ty]; in (newproof, [newmeta1 ; newmeta2]) in PET.mk_tactic (cut_tac ~mk_fresh_name_callback term) let letin_tac ?(mk_fresh_name_callback=FreshNamesGenerator.mk_fresh_name ~subst:[]) term = let letin_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term (proof, goal) = let module C = Cic in let curi,metasenv,_subst,pbo,pty, attrs = proof in (* occur check *) let occur i t = let m = CicUtil.metas_of_term t in List.exists (fun (j,_) -> i=j) m in let metano,context,ty = CicUtil.lookup_meta goal metasenv in if occur metano term then raise (ProofEngineTypes.Fail (lazy "You can't letin a term containing the current goal")); let tty,_ = CicTypeChecker.type_of_aux' metasenv context term CicUniv.oblivion_ugraph in let newmeta = ProofEngineHelpers.new_meta_of_proof ~proof in let fresh_name = mk_fresh_name_callback metasenv context (Cic.Name "Hletin") ~typ:term in let context_for_newmeta = (Some (fresh_name,C.Def (term,tty)))::context in let irl = CicMkImplicit.identity_relocation_list_for_metavariable context_for_newmeta in let newmetaty = CicSubstitution.lift 1 ty in let bo' = C.LetIn (fresh_name,term,tty,C.Meta (newmeta,irl)) in let (newproof, _) = ProofEngineHelpers.subst_meta_in_proof proof metano bo'[newmeta,context_for_newmeta,newmetaty] in (newproof, [newmeta]) in PET.mk_tactic (letin_tac ~mk_fresh_name_callback term) (** functional part of the "exact" tactic *) let exact_tac ~term = let exact_tac ~term (proof, goal) = (* Assumption: the term bo must be closed in the current context *) let (_,metasenv,_subst,_,_, _) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let module T = CicTypeChecker in let module R = CicReduction in let ty_term,u = T.type_of_aux' metasenv context term CicUniv.oblivion_ugraph in let b,_ = R.are_convertible context ty_term ty u in (* TASSI: FIXME *) if b then begin let (newproof, metasenv') = ProofEngineHelpers.subst_meta_in_proof proof metano term [] in (newproof, []) end else raise (PET.Fail (lazy "The type of the provided term is not the one expected.")) in PET.mk_tactic (exact_tac ~term) (* not really "primitive" tactics .... *) module TC = CicTypeChecker module UM = UriManager module R = CicReduction module C = Cic module PEH = ProofEngineHelpers module PER = ProofEngineReduction module MS = CicMetaSubst module S = CicSubstitution module T = Tacticals module RT = ReductionTactics let rec args_init n f = if n <= 0 then [] else f n :: args_init (pred n) f let mk_predicate_for_elim ~context ~metasenv ~ugraph ~goal ~arg ~using ~cpattern ~args_no = let instantiated_eliminator = let f n = if n = 1 then arg else C.Implicit None in C.Appl (using :: args_init args_no f) in let _actual_arg, iety, _metasenv', _ugraph = CicRefine.type_of_aux' metasenv context instantiated_eliminator ugraph in let _actual_meta, actual_args = match iety with | C.Meta (i, _) -> i, [] | C.Appl (C.Meta (i, _) :: args) -> i, args | _ -> assert false in (* let _, upto = PEH.split_with_whd (List.nth splits pred_pos) in *) let rec mk_pred metasenv context' pred arg' cpattern' = function | [] -> metasenv, pred, arg' | arg :: tail -> (* FG: we find the predicate for the eliminator as in the rewrite tactic ****) let argty, _ugraph = TC.type_of_aux' metasenv context arg ugraph in let argty = CicReduction.whd context argty in let fresh_name = FreshNamesGenerator.mk_fresh_name ~subst:[] metasenv context' C.Anonymous ~typ:argty in let hyp = Some (fresh_name, C.Decl argty) in let lazy_term c m u = let distance = List.length c - List.length context in S.lift distance arg, m, u in let pattern = Some lazy_term, [], Some cpattern' in let subst, metasenv, _ugraph, _conjecture, selected_terms = ProofEngineHelpers.select ~metasenv ~ugraph ~conjecture:(0, context, pred) ~pattern in let metasenv = MS.apply_subst_metasenv subst metasenv in let map (_context_of_t, t) l = t :: l in let what = List.fold_right map selected_terms [] in let arg' = MS.apply_subst subst arg' in let argty = MS.apply_subst subst argty in let pred = PER.replace_with_rel_1_from ~equality:(==) ~what 1 pred in let pred = MS.apply_subst subst pred in let pred = C.Lambda (fresh_name, argty, pred) in let cpattern' = C.Lambda (C.Anonymous, C.Implicit None, cpattern') in mk_pred metasenv (hyp :: context') pred arg' cpattern' tail in let metasenv, pred, arg = mk_pred metasenv context goal arg cpattern (List.rev actual_args) in HLog.debug ("PREDICATE: " ^ CicPp.ppterm ~metasenv pred ^ " ARGS: " ^ String.concat " " (List.map (CicPp.ppterm ~metasenv) actual_args)); metasenv, pred, arg, actual_args let beta_after_elim_tac upto predicate = let beta_after_elim_tac status = let proof, goal = status in let _, metasenv, _subst, _, _, _ = proof in let _, _, ty = CicUtil.lookup_meta goal metasenv in let mk_pattern ~equality ~upto ~predicate ty = (* code adapted from ProceduralConversion.generalize *) let meta = C.Implicit None in let hole = C.Implicit (Some `Hole) in let anon = C.Anonymous in let is_meta = let map b = function | C.Implicit None when b -> b | _ -> false in List.fold_left map true in let rec gen_fix len k (name, i, ty, bo) = name, i, gen_term k ty, gen_term (k + len) bo and gen_cofix len k (name, ty, bo) = name, gen_term k ty, gen_term (k + len) bo and gen_term k = function | C.Sort _ | C.Implicit _ | C.Const (_, _) | C.Var (_, _) | C.MutInd (_, _, _) | C.MutConstruct (_, _, _, _) | C.Meta (_, _) | C.Rel _ -> meta | C.Appl (hd :: tl) when equality hd (S.lift k predicate) -> assert (List.length tl = upto); hole | C.Appl ts -> let ts = List.map (gen_term k) ts in if is_meta ts then meta else C.Appl ts | C.Cast (te, ty) -> let te, ty = gen_term k te, gen_term k ty in if is_meta [te; ty] then meta else C.Cast (te, ty) | C.MutCase (sp, i, outty, t, pl) -> let outty, t, pl = gen_term k outty, gen_term k t, List.map (gen_term k) pl in if is_meta (outty :: t :: pl) then meta else hole (* C.MutCase (sp, i, outty, t, pl) *) | C.Prod (_, s, t) -> let s, t = gen_term k s, gen_term (succ k) t in if is_meta [s; t] then meta else C.Prod (anon, s, t) | C.Lambda (_, s, t) -> let s, t = gen_term k s, gen_term (succ k) t in if is_meta [s; t] then meta else C.Lambda (anon, s, t) | C.LetIn (_, s, ty, t) -> let s,ty,t = gen_term k s, gen_term k ty, gen_term (succ k) t in if is_meta [s; t] then meta else C.LetIn (anon, s, ty, t) | C.Fix (i, fl) -> C.Fix (i, List.map (gen_fix (List.length fl) k) fl) | C.CoFix (i, fl) -> C.CoFix (i, List.map (gen_cofix (List.length fl) k) fl) in None, [], Some (gen_term 0 ty) in let equality = CicUtil.alpha_equivalence in let pattern = mk_pattern ~equality ~upto ~predicate ty in let tactic = RT.head_beta_reduce_tac ~delta:false ~upto ~pattern in PET.apply_tactic tactic status in PET.mk_tactic beta_after_elim_tac let elim_tac ?using ?(pattern = PET.conclusion_pattern None) term = let elim_tac (proof, goal) = let cpattern = match pattern with | None, [], Some cpattern -> cpattern | _ -> raise (PET.Fail (lazy "not implemented")) in let ugraph = CicUniv.oblivion_ugraph in let curi, metasenv, _subst, proofbo, proofty, attrs = proof in let conjecture = CicUtil.lookup_meta goal metasenv in let metano, context, ty = conjecture in let termty,_ugraph = TC.type_of_aux' metasenv context term ugraph in let termty = CicReduction.whd context termty in let termty, metasenv', arguments, _fresh_meta = TermUtil.saturate_term (ProofEngineHelpers.new_meta_of_proof proof) metasenv context termty 0 in let term = if arguments = [] then term else Cic.Appl (term::arguments) in let uri, exp_named_subst, typeno, _args = match termty with C.MutInd (uri,typeno,exp_named_subst) -> (uri,exp_named_subst,typeno,[]) | C.Appl ((C.MutInd (uri,typeno,exp_named_subst))::args) -> (uri,exp_named_subst,typeno,args) | _ -> raise NotAnInductiveTypeToEliminate in let eliminator_uri = let buri = UM.buri_of_uri uri in let name = let o,_ugraph = CicEnvironment.get_obj ugraph uri in match o with C.InductiveDefinition (tys,_,_,_) -> let (name,_,_,_) = List.nth tys typeno in name | _ -> assert false in let ty_ty,_ugraph = TC.type_of_aux' metasenv' context ty ugraph in let ext = match ty_ty with C.Sort C.Prop -> "_ind" | C.Sort C.Set -> "_rec" | C.Sort C.CProp -> "_rec" | C.Sort (C.Type _)-> "_rect" | C.Meta (_,_) -> raise TheTypeOfTheCurrentGoalIsAMetaICannotChooseTheRightElimiantionPrinciple | _ -> assert false in UM.uri_of_string (buri ^ "/" ^ name ^ ext ^ ".con") in let eliminator_ref = match using with | None -> C.Const (eliminator_uri, exp_named_subst) | Some t -> t in let ety, _ugraph = TC.type_of_aux' metasenv' context eliminator_ref ugraph in (* FG: ADDED PART ***********************************************************) (* FG: we can not assume eliminator is the default eliminator ***************) let splits, args_no = PEH.split_with_whd (context, ety) in let pred_pos = match List.hd splits with | _, C.Rel i when i > 1 && i <= args_no -> i | _, C.Appl (C.Rel i :: _) when i > 1 && i <= args_no -> i | _ -> raise NotAnEliminator in let metasenv', pred, term, actual_args = match pattern with | None, [], Some (C.Implicit (Some `Hole)) -> metasenv', C.Implicit None, term, [] | _ -> mk_predicate_for_elim ~args_no ~context ~ugraph ~cpattern ~metasenv:metasenv' ~arg:term ~using:eliminator_ref ~goal:ty in (* FG: END OF ADDED PART ****************************************************) let term_to_refine = let f n = if n = pred_pos then pred else if n = 1 then term else C.Implicit None in C.Appl (eliminator_ref :: args_init args_no f) in let refined_term,_refined_termty,metasenv'',_ugraph = CicRefine.type_of_aux' metasenv' context term_to_refine ugraph in let new_goals = ProofEngineHelpers.compare_metasenvs ~oldmetasenv:metasenv ~newmetasenv:metasenv'' in let proof' = curi,metasenv'',_subst,proofbo,proofty, attrs in let proof'', new_goals' = PET.apply_tactic (apply_tac ~term:refined_term) (proof',goal) in (* The apply_tactic can have closed some of the new_goals *) let patched_new_goals = let (_,metasenv''',_subst,_,_, _) = proof'' in List.filter (function i -> List.exists (function (j,_,_) -> j=i) metasenv''') new_goals @ new_goals' in let res = proof'', patched_new_goals in let upto = List.length actual_args in if upto = 0 then res else let continuation = beta_after_elim_tac upto pred in let dummy_status = proof,goal in PET.apply_tactic (T.then_ ~start:(PET.mk_tactic (fun _ -> res)) ~continuation) dummy_status in PET.mk_tactic elim_tac ;; let cases_intros_tac ?(howmany=(-1)) ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) term = let cases_tac ~term (proof, goal) = let module TC = CicTypeChecker in let module U = UriManager in let module R = CicReduction in let module C = Cic in let (curi,metasenv,_subst, proofbo,proofty, attrs) = proof in let metano,context,ty = CicUtil.lookup_meta goal metasenv in let termty,_ = TC.type_of_aux' metasenv context term CicUniv.oblivion_ugraph in let termty = CicReduction.whd context termty in let (termty,metasenv',arguments,fresh_meta) = TermUtil.saturate_term (ProofEngineHelpers.new_meta_of_proof proof) metasenv context termty 0 in let term = if arguments = [] then term else Cic.Appl (term::arguments) in let uri,exp_named_subst,typeno,args = match termty with | C.MutInd (uri,typeno,exp_named_subst) -> (uri,exp_named_subst,typeno,[]) | C.Appl ((C.MutInd (uri,typeno,exp_named_subst))::args) -> (uri,exp_named_subst,typeno,args) | _ -> raise NotAnInductiveTypeToEliminate in let paramsno,itty,patterns,right_args = match CicEnvironment.get_obj CicUniv.oblivion_ugraph uri with | C.InductiveDefinition (tys,_,paramsno,_),_ -> let _,left_parameters,right_args = List.fold_right (fun x (n,acc1,acc2) -> if n > 0 then (n-1,acc1,x::acc2) else (n,x::acc1,acc2)) args (List.length args - paramsno, [],[]) in let _,_,itty,cl = List.nth tys typeno in let rec aux left_parameters context t = match left_parameters,CicReduction.whd context t with | [],C.Prod (name,source,target) -> let fresh_name = mk_fresh_name_callback metasenv' context name ~typ:source in C.Lambda (fresh_name,C.Implicit None, aux [] (Some (fresh_name,C.Decl source)::context) target) | hd::tl,C.Prod (name,source,target) -> (* left parameters instantiation *) aux tl context (CicSubstitution.subst hd target) | [],_ -> C.Implicit None | _ -> assert false in paramsno,itty, List.map (function (_,cty) -> aux left_parameters context cty) cl, right_args | _ -> assert false in let outtype = let n_right_args = List.length right_args in let n_lambdas = n_right_args + 1 in let lifted_ty = CicSubstitution.lift n_lambdas ty in let captured_ty = let what = List.map (CicSubstitution.lift n_lambdas) (right_args) in let with_what meta = let rec mkargs = function | 0 -> assert false | 1 -> [] | n -> (if meta then Cic.Implicit None else Cic.Rel n)::(mkargs (n-1)) in mkargs n_lambdas in let replaced = ref false in let replace = ProofEngineReduction.replace_lifting ~equality:(fun _ a b -> let rc = CicUtil.alpha_equivalence a b in if rc then replaced := true; rc) ~context:[] in let captured = replace ~what:[CicSubstitution.lift n_lambdas term] ~with_what:[Cic.Rel 1] ~where:lifted_ty in if not !replaced then (* this means the matched term is not there, * but maybe right params are: we user rels (to right args lambdas) *) replace ~what ~with_what:(with_what false) ~where:captured else (* since the matched is there, rights should be inferrable *) replace ~what ~with_what:(with_what true) ~where:captured in let captured_term_ty = let term_ty = CicSubstitution.lift n_right_args termty in let rec mkrels = function 0 -> []|n -> (Cic.Rel n)::(mkrels (n-1)) in let rec fstn acc l n = if n = 0 then acc else fstn (acc@[List.hd l]) (List.tl l) (n-1) in match term_ty with | C.MutInd _ -> term_ty | C.Appl ((C.MutInd (a,b,c))::args) -> C.Appl ((C.MutInd (a,b,c)):: fstn [] args paramsno @ mkrels n_right_args) | _ -> raise NotAnInductiveTypeToEliminate in let rec add_lambdas = function | 0 -> captured_ty | 1 -> C.Lambda (C.Name "matched", captured_term_ty, (add_lambdas 0)) | n -> C.Lambda (C.Name ("right_"^(string_of_int (n-1))), C.Implicit None, (add_lambdas (n-1))) in add_lambdas n_lambdas in let term_to_refine = C.MutCase (uri,typeno,outtype,term,patterns) in let refined_term,_,metasenv'',_ = CicRefine.type_of_aux' metasenv' context term_to_refine CicUniv.oblivion_ugraph in let new_goals = ProofEngineHelpers.compare_metasenvs ~oldmetasenv:metasenv ~newmetasenv:metasenv'' in let proof' = curi,metasenv'',_subst,proofbo,proofty, attrs in let proof'', new_goals' = PET.apply_tactic (apply_tac ~term:refined_term) (proof',goal) in (* The apply_tactic can have closed some of the new_goals *) let patched_new_goals = let (_,metasenv''',_subst,_,_,_) = proof'' in List.filter (function i -> List.exists (function (j,_,_) -> j=i) metasenv''') new_goals @ new_goals' in proof'', patched_new_goals in PET.mk_tactic (cases_tac ~term) ;; let elim_intros_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) ?depth ?using ?pattern what = Tacticals.then_ ~start:(elim_tac ?using ?pattern what) ~continuation:(intros_tac ~mk_fresh_name_callback ?howmany:depth ()) ;; (* The simplification is performed only on the conclusion *) let elim_intros_simpl_tac ?(mk_fresh_name_callback = FreshNamesGenerator.mk_fresh_name ~subst:[]) ?depth ?using ?pattern what = Tacticals.then_ ~start:(elim_tac ?using ?pattern what) ~continuation: (Tacticals.thens ~start:(intros_tac ~mk_fresh_name_callback ?howmany:depth ()) ~continuations: [ReductionTactics.simpl_tac ~pattern:(ProofEngineTypes.conclusion_pattern None)]) ;;