(* Copyright (C) 2002, HELM Team. * * This file is part of HELM, an Hypertextual, Electronic * Library of Mathematics, developed at the Computer Science * Department, University of Bologna, Italy. * * HELM is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * HELM is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with HELM; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. * * For details, see the HELM World-Wide-Web page, * http://cs.unibo.it/helm/. *) (* $Id$ *) exception Bad_pattern of string Lazy.t let new_meta_of_proof ~proof:(_, metasenv, _, _, _, _) = CicMkImplicit.new_meta metasenv [] let subst_meta_in_proof proof meta term newmetasenv = let uri,metasenv,initial_subst,bo,ty, attrs = proof in (* empty context is ok for term since it wont be used by apply_subst *) (* hack: since we do not know the context and the type of term, we create a substitution with cc =[] and type = Implicit; they will be in any case dropped by apply_subst, but it would be better to rewrite the code. Cannot we just use apply_subst_metasenv, etc. ?? *) let subst_in = CicMetaSubst.apply_subst [meta,([], term,Cic.Implicit None)] in let metasenv' = newmetasenv @ (List.filter (function (m,_,_) -> m <> meta) metasenv) in let metasenv'' = List.map (function i,canonical_context,ty -> let canonical_context' = List.map (function Some (n,Cic.Decl s) -> Some (n,Cic.Decl (subst_in s)) | None -> None | Some (n,Cic.Def (bo,ty)) -> Some (n,Cic.Def (subst_in bo,subst_in ty)) ) canonical_context in i,canonical_context',(subst_in ty) ) metasenv' in let bo' = subst_in bo in (* Metavariables can appear also in the *statement* of the theorem * since the parser does not reject as statements terms with * metavariable therein *) let ty' = subst_in ty in let newproof = uri,metasenv'',initial_subst,bo',ty', attrs in (newproof, metasenv'') (*CSC: commento vecchio *) (* refine_meta_with_brand_new_metasenv meta term subst_in newmetasenv *) (* This (heavy) function must be called when a tactic can instantiate old *) (* metavariables (i.e. existential variables). It substitues the metasenv *) (* of the proof with the result of removing [meta] from the domain of *) (* [newmetasenv]. Then it replaces Cic.Meta [meta] with [term] everywhere *) (* in the current proof. Finally it applies [apply_subst_replacing] to *) (* current proof. *) (*CSC: A questo punto perche' passare un bo' gia' istantiato, se tanto poi *) (*CSC: ci ripasso sopra apply_subst!!! *) (*CSC: Attenzione! Ora questa funzione applica anche [subst_in] a *) (*CSC: [newmetasenv]. *) let subst_meta_and_metasenv_in_proof proof meta subst newmetasenv = let (uri,_,initial_subst,bo,ty, attrs) = proof in let subst_in = CicMetaSubst.apply_subst subst in let bo' = subst_in bo in (* Metavariables can appear also in the *statement* of the theorem * since the parser does not reject as statements terms with * metavariable therein *) let ty' = subst_in ty in let metasenv' = List.fold_right (fun metasenv_entry i -> match metasenv_entry with (m,canonical_context,ty) when m <> meta -> let canonical_context' = List.map (function None -> None | Some (i,Cic.Decl t) -> Some (i,Cic.Decl (subst_in t)) | Some (i,Cic.Def (bo,ty)) -> Some (i,Cic.Def (subst_in bo,subst_in ty)) ) canonical_context in (m,canonical_context',subst_in ty)::i | _ -> i ) newmetasenv [] in (* qui da capire se per la fase transitoria si fa initial_subst @ subst * oppure subst *) let newproof = uri,metasenv',subst,bo',ty', attrs in (newproof, metasenv') let compare_metasenvs ~oldmetasenv ~newmetasenv = List.map (function (i,_,_) -> i) (List.filter (function (i,_,_) -> not (List.exists (fun (j,_,_) -> i=j) oldmetasenv)) newmetasenv) ;; (** finds the _pointers_ to subterms that are alpha-equivalent to wanted in t *) let find_subterms ~subst ~metasenv ~ugraph ~wanted ~context t = let rec find subst metasenv ugraph context w t = try let subst,metasenv,ugraph = CicUnification.fo_unif_subst subst context metasenv w t ugraph in subst,metasenv,ugraph,[context,t] with CicUnification.UnificationFailure _ | CicUnification.Uncertain _ -> match t with | Cic.Sort _ | Cic.Rel _ -> subst,metasenv,ugraph,[] | Cic.Meta (_, ctx) -> List.fold_left ( fun (subst,metasenv,ugraph,acc) e -> match e with | None -> subst,metasenv,ugraph,acc | Some t -> let subst,metasenv,ugraph,res = find subst metasenv ugraph context w t in subst,metasenv,ugraph, res @ acc ) (subst,metasenv,ugraph,[]) ctx | Cic.Lambda (name, t1, t2) | Cic.Prod (name, t1, t2) -> let subst,metasenv,ugraph,rest1 = find subst metasenv ugraph context w t1 in let subst,metasenv,ugraph,rest2 = find subst metasenv ugraph (Some (name, Cic.Decl t1)::context) (CicSubstitution.lift 1 w) t2 in subst,metasenv,ugraph,rest1 @ rest2 | Cic.LetIn (name, t1, t2, t3) -> let subst,metasenv,ugraph,rest1 = find subst metasenv ugraph context w t1 in let subst,metasenv,ugraph,rest2 = find subst metasenv ugraph context w t2 in let subst,metasenv,ugraph,rest3 = find subst metasenv ugraph (Some (name, Cic.Def (t1,t2))::context) (CicSubstitution.lift 1 w) t3 in subst,metasenv,ugraph,rest1 @ rest2 @ rest3 | Cic.Appl l -> List.fold_left (fun (subst,metasenv,ugraph,acc) t -> let subst,metasenv,ugraph,res = find subst metasenv ugraph context w t in subst,metasenv,ugraph,res @ acc) (subst,metasenv,ugraph,[]) l | Cic.Cast (t, ty) -> let subst,metasenv,ugraph,rest = find subst metasenv ugraph context w t in let subst,metasenv,ugraph,resty = find subst metasenv ugraph context w ty in subst,metasenv,ugraph,rest @ resty | Cic.Implicit _ -> assert false | Cic.Const (_, esubst) | Cic.Var (_, esubst) | Cic.MutInd (_, _, esubst) | Cic.MutConstruct (_, _, _, esubst) -> List.fold_left (fun (subst,metasenv,ugraph,acc) (_, t) -> let subst,metasenv,ugraph,res = find subst metasenv ugraph context w t in subst,metasenv,ugraph,res @ acc) (subst,metasenv,ugraph,[]) esubst | Cic.MutCase (_, _, outty, indterm, patterns) -> let subst,metasenv,ugraph,resoutty = find subst metasenv ugraph context w outty in let subst,metasenv,ugraph,resindterm = find subst metasenv ugraph context w indterm in let subst,metasenv,ugraph,respatterns = List.fold_left (fun (subst,metasenv,ugraph,acc) p -> let subst,metaseng,ugraph,res = find subst metasenv ugraph context w p in subst,metasenv,ugraph,res @ acc ) (subst,metasenv,ugraph,[]) patterns in subst,metasenv,ugraph,resoutty @ resindterm @ respatterns | Cic.Fix (_, funl) -> let tys = List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funl in List.fold_left ( fun (subst,metasenv,ugraph,acc) (_, _, ty, bo) -> let subst,metasenv,ugraph,resty = find subst metasenv ugraph context w ty in let subst,metasenv,ugraph,resbo = find subst metasenv ugraph (tys @ context) w bo in subst,metasenv,ugraph, resty @ resbo @ acc ) (subst,metasenv,ugraph,[]) funl | Cic.CoFix (_, funl) -> let tys = List.map (fun (n,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funl in List.fold_left ( fun (subst,metasenv,ugraph,acc) (_, ty, bo) -> let subst,metasenv,ugraph,resty = find subst metasenv ugraph context w ty in let subst,metasenv,ugraph,resbo = find subst metasenv ugraph (tys @ context) w bo in subst,metasenv,ugraph, resty @ resbo @ acc ) (subst,metasenv,ugraph,[]) funl in find subst metasenv ugraph context wanted t let select_in_term ~metasenv ~context ~ugraph ~term ~pattern:(wanted,where) = let add_ctx context name entry = (Some (name, entry)) :: context in let map2 error_msg f l1 l2 = try List.map2 f l1 l2 with | Invalid_argument _ -> raise (Bad_pattern (lazy error_msg)) in let rec aux context where term = match (where, term) with | Cic.Implicit (Some `Hole), t -> [context,t] | Cic.Implicit (Some `Type), t -> [] | Cic.Implicit None,_ -> [] | Cic.Meta (_, ctxt1), Cic.Meta (_, ctxt2) -> List.concat (map2 "wrong number of argument in explicit substitution" (fun t1 t2 -> (match (t1, t2) with Some t1, Some t2 -> aux context t1 t2 | _ -> [])) ctxt1 ctxt2) | Cic.Cast (te1, ty1), Cic.Cast (te2, ty2) -> aux context te1 te2 @ aux context ty1 ty2 | Cic.Prod (Cic.Anonymous, s1, t1), Cic.Prod (name, s2, t2) | Cic.Lambda (Cic.Anonymous, s1, t1), Cic.Lambda (name, s2, t2) -> aux context s1 s2 @ aux (add_ctx context name (Cic.Decl s2)) t1 t2 | Cic.Prod (Cic.Name n1, s1, t1), Cic.Prod ((Cic.Name n2) as name , s2, t2) | Cic.Lambda (Cic.Name n1, s1, t1), Cic.Lambda ((Cic.Name n2) as name, s2, t2) when n1 = n2-> aux context s1 s2 @ aux (add_ctx context name (Cic.Decl s2)) t1 t2 | Cic.Prod (name1, s1, t1), Cic.Prod (name2, s2, t2) | Cic.Lambda (name1, s1, t1), Cic.Lambda (name2, s2, t2) -> [] | Cic.LetIn (Cic.Anonymous, s1, ty1, t1), Cic.LetIn (name, s2, ty2, t2) -> aux context s1 s2 @ aux context ty1 ty2 @ aux (add_ctx context name (Cic.Def (s2,ty2))) t1 t2 | Cic.LetIn (Cic.Name n1, s1, ty1, t1), Cic.LetIn ((Cic.Name n2) as name, s2, ty2, t2) when n1 = n2-> aux context s1 s2 @ aux context ty1 ty2 @ aux (add_ctx context name (Cic.Def (s2,ty2))) t1 t2 | Cic.LetIn (name1, s1, ty1, t1), Cic.LetIn (name2, s2, ty2, t2) -> [] | Cic.Appl terms1, Cic.Appl terms2 -> auxs context terms1 terms2 | Cic.Var (_, subst1), Cic.Var (_, subst2) | Cic.Const (_, subst1), Cic.Const (_, subst2) | Cic.MutInd (_, _, subst1), Cic.MutInd (_, _, subst2) | Cic.MutConstruct (_, _, _, subst1), Cic.MutConstruct (_, _, _, subst2) -> auxs context (List.map snd subst1) (List.map snd subst2) | Cic.MutCase (_, _, out1, t1, pat1), Cic.MutCase (_ , _, out2, t2, pat2) -> aux context out1 out2 @ aux context t1 t2 @ auxs context pat1 pat2 | Cic.Fix (_, funs1), Cic.Fix (_, funs2) -> let tys = List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs2 in List.concat (map2 "wrong number of mutually recursive functions" (fun (_, _, ty1, bo1) (_, _, ty2, bo2) -> aux context ty1 ty2 @ aux (tys @ context) bo1 bo2) funs1 funs2) | Cic.CoFix (_, funs1), Cic.CoFix (_, funs2) -> let tys = List.map (fun (n,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs2 in List.concat (map2 "wrong number of mutually co-recursive functions" (fun (_, ty1, bo1) (_, ty2, bo2) -> aux context ty1 ty2 @ aux (tys @ context) bo1 bo2) funs1 funs2) | x,y -> raise (Bad_pattern (lazy (Printf.sprintf "Pattern %s versus term %s" (CicPp.ppterm x) (CicPp.ppterm y)))) and auxs context terms1 terms2 = (* as aux for list of terms *) List.concat (map2 "wrong number of arguments in application" (fun t1 t2 -> aux context t1 t2) terms1 terms2) in let roots = match where with | None -> [] | Some where -> aux context where term in match wanted with None -> [],metasenv,ugraph,roots | Some wanted -> let rec find_in_roots = function [] -> [],metasenv,ugraph,[] | (context',where)::tl -> let subst,metasenv,ugraph,tl' = find_in_roots tl in let subst,metasenv,ugraph,found = let wanted, metasenv, ugraph = wanted context' metasenv ugraph in find_subterms ~subst ~metasenv ~ugraph ~wanted ~context:context' where in subst,metasenv,ugraph,found @ tl' in find_in_roots roots (** create a pattern from a term and a list of subterms. * the pattern is granted to have a ? for every subterm that has no selected * subterms * @param equality equality function used while walking the term. Defaults to * physical equality (==) *) let pattern_of ?(equality=(==)) ~term terms = let (===) x y = equality x y in let not_found = false, Cic.Implicit None in let rec aux t = match t with | t when List.exists (fun t' -> t === t') terms -> true,Cic.Implicit (Some `Hole) | Cic.Var (uri, subst) -> let b,subst = aux_subst subst in if b then true,Cic.Var (uri, subst) else not_found | Cic.Meta (i, ctxt) -> let b,ctxt = List.fold_right (fun e (b,ctxt) -> match e with None -> b,None::ctxt | Some t -> let bt,t = aux t in b||bt ,Some t::ctxt ) ctxt (false,[]) in if b then true,Cic.Meta (i, ctxt) else not_found | Cic.Cast (te, ty) -> let b1,te = aux te in let b2,ty = aux ty in if b1||b2 then true,Cic.Cast (te, ty) else not_found | Cic.Prod (_, s, t) -> let b1,s = aux s in let b2,t = aux t in if b1||b2 then true, Cic.Prod (Cic.Anonymous, s, t) else not_found | Cic.Lambda (_, s, t) -> let b1,s = aux s in let b2,t = aux t in if b1||b2 then true, Cic.Lambda (Cic.Anonymous, s, t) else not_found | Cic.LetIn (_, s, ty, t) -> let b1,s = aux s in let b2,ty = aux ty in let b3,t = aux t in if b1||b2||b3 then true, Cic.LetIn (Cic.Anonymous, s, ty, t) else not_found | Cic.Appl terms -> let b,terms = List.fold_right (fun t (b,terms) -> let bt,t = aux t in b||bt,t::terms ) terms (false,[]) in if b then true,Cic.Appl terms else not_found | Cic.Const (uri, subst) -> let b,subst = aux_subst subst in if b then true, Cic.Const (uri, subst) else not_found | Cic.MutInd (uri, tyno, subst) -> let b,subst = aux_subst subst in if b then true, Cic.MutInd (uri, tyno, subst) else not_found | Cic.MutConstruct (uri, tyno, consno, subst) -> let b,subst = aux_subst subst in if b then true, Cic.MutConstruct (uri, tyno, consno, subst) else not_found | Cic.MutCase (uri, tyno, outty, t, pat) -> let b1,outty = aux outty in let b2,t = aux t in let b3,pat = List.fold_right (fun t (b,pat) -> let bt,t = aux t in bt||b,t::pat ) pat (false,[]) in if b1 || b2 || b3 then true, Cic.MutCase (uri, tyno, outty, t, pat) else not_found | Cic.Fix (funno, funs) -> let b,funs = List.fold_right (fun (name, i, ty, bo) (b,funs) -> let b1,ty = aux ty in let b2,bo = aux bo in b||b1||b2, (name, i, ty, bo)::funs) funs (false,[]) in if b then true, Cic.Fix (funno, funs) else not_found | Cic.CoFix (funno, funs) -> let b,funs = List.fold_right (fun (name, ty, bo) (b,funs) -> let b1,ty = aux ty in let b2,bo = aux bo in b||b1||b2, (name, ty, bo)::funs) funs (false,[]) in if b then true, Cic.CoFix (funno, funs) else not_found | Cic.Rel _ | Cic.Sort _ | Cic.Implicit _ -> not_found and aux_subst subst = List.fold_right (fun (uri, t) (b,subst) -> let b1,t = aux t in b||b1,(uri, t)::subst) subst (false,[]) in snd (aux term) exception Fail of string Lazy.t (** select metasenv conjecture pattern * select all subterms of [conjecture] matching [pattern]. * It returns the set of matched terms (that can be compared using physical * equality to the subterms of [conjecture]) together with their contexts. * The representation of the set mimics the ProofEngineTypes.pattern type: * a list of hypothesis (names of) together with the list of its matched * subterms (and their contexts) + the list of matched subterms of the * with their context conclusion. Note: in the result the list of hypothesis * has an entry for each entry in the context and in the same order. * Of course the list of terms (with their context) associated to the * hypothesis name may be empty. * * @raise Bad_pattern * *) let select ~metasenv ~ugraph ~conjecture:(_,context,ty) ~(pattern: (Cic.term, Cic.lazy_term) ProofEngineTypes.pattern) = let what, hyp_patterns, goal_pattern = pattern in let find_pattern_for name = try Some (snd (List.find (fun (n, pat) -> Cic.Name n = name) hyp_patterns)) with Not_found -> None in (* Multiple hypotheses with the same name can be in the context. In this case we need to pick the last one, but we will perform a fold_right on the context. Thus we pre-process hyp_patterns. *) let full_hyp_pattern = let rec aux blacklist = function [] -> [] | None::tl -> None::aux blacklist tl | Some (name,_)::tl -> if List.mem name blacklist then None::aux blacklist tl else find_pattern_for name::aux (name::blacklist) tl in aux [] context in let subst,metasenv,ugraph,ty_terms = select_in_term ~metasenv ~context ~ugraph ~term:ty ~pattern:(what,goal_pattern) in let subst,metasenv,ugraph,context_terms = let subst,metasenv,ugraph,res,_ = (List.fold_right (fun (pattern,entry) (subst,metasenv,ugraph,res,context) -> match entry with None -> subst,metasenv,ugraph,None::res,None::context | Some (name,Cic.Decl term) -> (match pattern with | None -> subst,metasenv,ugraph,((Some (`Decl []))::res),(entry::context) | Some pat -> let subst,metasenv,ugraph,terms = select_in_term ~metasenv ~context ~ugraph ~term ~pattern:(what, Some pat) in subst,metasenv,ugraph,((Some (`Decl terms))::res), (entry::context)) | Some (name,Cic.Def (bo, ty)) -> (match pattern with | None -> let selected_ty = [] in subst,metasenv,ugraph,((Some (`Def ([],selected_ty)))::res), (entry::context) | Some pat -> let subst,metasenv,ugraph,terms_bo = select_in_term ~metasenv ~context ~ugraph ~term:bo ~pattern:(what, Some pat) in let subst,metasenv,ugraph,terms_ty = let subst,metasenv,ugraph,res = select_in_term ~metasenv ~context ~ugraph ~term:ty ~pattern:(what, Some pat) in subst,metasenv,ugraph,res in subst,metasenv,ugraph,((Some (`Def (terms_bo,terms_ty)))::res), (entry::context)) ) (List.combine full_hyp_pattern context) (subst,metasenv,ugraph,[],[])) in subst,metasenv,ugraph,res in subst,metasenv,ugraph,context_terms, ty_terms (** locate_in_term equality what where context * [what] must match a subterm of [where] according to [equality] * It returns the matched terms together with their contexts in [where] * [equality] defaults to physical equality * [context] must be the context of [where] *) let locate_in_term ?(equality=(fun _ -> (==))) what ~where context = let add_ctx context name entry = (Some (name, entry)) :: context in let rec aux context where = if equality context what where then [context,where] else match where with | Cic.Implicit _ | Cic.Meta _ | Cic.Rel _ | Cic.Sort _ | Cic.Var _ | Cic.Const _ | Cic.MutInd _ | Cic.MutConstruct _ -> [] | Cic.Cast (te, ty) -> aux context te @ aux context ty | Cic.Prod (name, s, t) | Cic.Lambda (name, s, t) -> aux context s @ aux (add_ctx context name (Cic.Decl s)) t | Cic.LetIn (name, s, ty, t) -> aux context s @ aux context ty @ aux (add_ctx context name (Cic.Def (s,ty))) t | Cic.Appl tl -> auxs context tl | Cic.MutCase (_, _, out, t, pat) -> aux context out @ aux context t @ auxs context pat | Cic.Fix (_, funs) -> let tys = List.map (fun (n,_,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs in List.concat (List.map (fun (_, _, ty, bo) -> aux context ty @ aux (tys @ context) bo) funs) | Cic.CoFix (_, funs) -> let tys = List.map (fun (n,ty,_) -> Some (Cic.Name n,(Cic.Decl ty))) funs in List.concat (List.map (fun (_, ty, bo) -> aux context ty @ aux (tys @ context) bo) funs) and auxs context tl = (* as aux for list of terms *) List.concat (List.map (fun t -> aux context t) tl) in aux context where (** locate_in_conjecture equality what where context * [what] must match a subterm of [where] according to [equality] * It returns the matched terms together with their contexts in [where] * [equality] defaults to physical equality * [context] must be the context of [where] *) let locate_in_conjecture ?(equality=fun _ -> (==)) what (_,context,ty) = let context,res = List.fold_right (fun entry (context,res) -> match entry with None -> entry::context, res | Some (_, Cic.Decl ty) -> let res = res @ locate_in_term what ~where:ty context in let context' = entry::context in context',res | Some (_, Cic.Def (bo,ty)) -> let res = res @ locate_in_term what ~where:bo context in let res = res @ locate_in_term what ~where:ty context in let context' = entry::context in context',res ) context ([],[]) in res @ locate_in_term what ~where:ty context let lookup_type metasenv context hyp = let rec aux p = function | Some (Cic.Name name, Cic.Decl t) :: _ when name = hyp -> p, t | Some (Cic.Name name, Cic.Def (_,t)) :: _ when name = hyp -> p, t | _ :: tail -> aux (succ p) tail | [] -> raise (ProofEngineTypes.Fail (lazy "lookup_type: not premise in the current goal")) in aux 1 context (* FG: **********************************************************************) let get_name context index = try match List.nth context (pred index) with | Some (Cic.Name name, _) -> Some name | _ -> None with Invalid_argument "List.nth" -> None let get_rel context name = let rec aux i = function | [] -> None | Some (Cic.Name s, _) :: _ when s = name -> Some (Cic.Rel i) | _ :: tl -> aux (succ i) tl in aux 1 context let split_with_whd (c, t) = let add s v c = Some (s, Cic.Decl v) :: c in let rec aux whd a n c = function | Cic.Prod (s, v, t) -> aux false ((c, v) :: a) (succ n) (add s v c) t | v when whd -> (c, v) :: a, n | v -> aux true a n c (CicReduction.whd c v) in aux false [] 0 c t let split_with_normalize (c, t) = let add s v c = Some (s, Cic.Decl v) :: c in let rec aux a n c = function | Cic.Prod (s, v, t) -> aux ((c, v) :: a) (succ n) (add s v c) t | v -> (c, v) :: a, n in aux [] 0 c (CicReduction.normalize c t) (* menv sorting *) module OT = struct type t = Cic.conjecture let compare (i,_,_) (j,_,_) = Pervasives.compare i j end module MS = HTopoSort.Make(OT) let relations_of_menv m c = let i, ctx, ty = c in let m = List.filter (fun (j,_,_) -> j <> i) m in let m_ty = List.map fst (CicUtil.metas_of_term ty) in let m_ctx = List.flatten (List.map (function | None -> [] | Some (_,Cic.Decl t) -> List.map fst (CicUtil.metas_of_term ty) | Some (_,Cic.Def (t,ty)) -> List.map fst (CicUtil.metas_of_term ty) @ List.map fst (CicUtil.metas_of_term t)) ctx) in let metas = HExtlib.list_uniq (List.sort compare (m_ty @ m_ctx)) in List.filter (fun (i,_,_) -> List.exists ((=) i) metas) m ;; let sort_metasenv (m : Cic.metasenv) = (MS.topological_sort m (relations_of_menv m) : Cic.metasenv) ;;