(*#* #stop file *) Require Arith. Require base_tactics. (* eq ***********************************************************************) Hint eq : ltlc := Constructors eq. Hint f1N : ltlc := Resolve (f_equal nat). Hint f2NN : ltlc := Resolve (f_equal2 nat nat). Hints Resolve sym_equal : ltlc. Hints Resolve plus_sym plus_n_Sm plus_assoc_r simpl_plus_l : ltlc. Hints Resolve minus_n_O : ltlc. (* le ***********************************************************************) Hint le : ltlc := Constructors le. Hints Resolve le_O_n le_n_S le_S_n le_trans : ltlc. Hints Resolve lt_le_S : ltlc. Hints Resolve le_plus_plus le_plus_trans le_plus_l le_plus_r : ltlc. (* lt ***********************************************************************) Hints Resolve lt_trans : ltlc. Hints Resolve lt_le_trans le_lt_n_Sm : ltlc. Hints Resolve lt_reg_r lt_le_plus_plus le_lt_plus_plus : ltlc. (* not **********************************************************************) Hints Resolve sym_not_equal : ltlc. (* missing in the standard library ******************************************) Theorem simpl_plus_r: (n,m,p:?) (plus m n) = (plus p n) -> m = p. Intros. Apply (simpl_plus_l n). Rewrite plus_sym. Rewrite H; XAuto. Qed. Theorem minus_plus_r: (m,n:?) (minus (plus m n) n) = m. Intros. Rewrite plus_sym. Apply minus_plus. Qed. Theorem plus_permute_2_in_3: (x,y,z:?) (plus (plus x y) z) = (plus (plus x z) y). Intros. Rewrite plus_assoc_r. Rewrite (plus_sym y z). Rewrite <- plus_assoc_r; XAuto. Qed. Theorem plus_permute_2_in_3_assoc: (n,h,k:?) (plus (plus n h) k) = (plus n (plus k h)). Intros. Rewrite plus_permute_2_in_3; Rewrite plus_assoc_l; XAuto. Qed. Theorem plus_O: (x,y:?) (plus x y) = (0) -> x = (O) /\ y = (O). XElim x; [ XAuto | Intros; Inversion H0 ]. Qed. Theorem minus_Sx_SO: (x:?) (minus (S x) (1)) = x. Intros; Simpl; Rewrite <- minus_n_O; XAuto. Qed. Theorem eq_nat_dec: (i,j:nat) ~i=j \/ i=j. XElim i; XElim j; Intros; XAuto. Elim (H n0); XAuto. Qed. Theorem neq_eq_e: (i,j:nat; P:Prop) (~i=j -> P) -> (i=j -> P) -> P. Intros. Pose (eq_nat_dec i j). XElim o; XAuto. Qed. Theorem le_false: (m,n:?; P:Prop) (le m n) -> (le (S n) m) -> P. XElim m. (* case 1 : m = 0 *) Intros; Inversion H0. (* case 2 : m > 0 *) XElim n0; Intros. (* case 2.1 : n = 0 *) Inversion H0. (* case 2.2 : n > 0 *) Simpl in H1. Apply (H n0); XAuto. Qed. Theorem le_plus_minus_sym: (n,m:?) (le n m) -> m = (plus (minus m n) n). Intros. Rewrite plus_sym; Apply le_plus_minus; XAuto. Qed. Theorem le_minus_minus: (x,y:?) (le x y) -> (z:?) (le y z) -> (le (minus y x) (minus z x)). Intros. EApply simpl_le_plus_l. Rewrite le_plus_minus_r; [ Idtac | XAuto ]. Rewrite le_plus_minus_r; XEAuto. Qed. Theorem le_minus_plus: (z,x:?) (le z x) -> (y:?) (minus (plus x y) z) = (plus (minus x z) y). XElim z. (* case 1 : z = 0 *) Intros x H; Inversion H; XAuto. (* case 2 : z > 0 *) Intros z; XElim x; Intros. (* case 2.1 : x = 0 *) Inversion H0. (* case 2.2 : x > 0 *) Simpl; XAuto. Qed. Theorem le_minus: (x,z,y:?) (le (plus x y) z) -> (le x (minus z y)). Intros. Rewrite <- (minus_plus_r x y); XAuto. Apply le_minus_minus; XAuto. Qed. Theorem le_trans_plus_r: (x,y,z:?) (le (plus x y) z) -> (le y z). Intros. EApply le_trans; [ EApply le_plus_r | Idtac ]; XEAuto. Qed. Theorem le_gen_S: (m,x:?) (le (S m) x) -> (EX n | x = (S n) & (le m n)). Intros; Inversion H; XEAuto. Qed. Theorem lt_x_plus_x_Sy: (x,y:?) (lt x (plus x (S y))). Intros; Rewrite plus_sym; Simpl; XAuto. Qed. Theorem simpl_lt_plus_r: (p,n,m:?) (lt (plus n p) (plus m p)) -> (lt n m). Intros. EApply simpl_lt_plus_l. Rewrite plus_sym in H; Rewrite (plus_sym m p) in H; Apply H. Qed. Theorem minus_x_Sy: (x,y:?) (lt y x) -> (minus x y) = (S (minus x (S y))). XElim x. (* case 1 : x = 0 *) Intros; Inversion H. (* case 2 : x > 0 *) XElim y; Intros; Simpl. (* case 2.1 : y = 0 *) Rewrite <- minus_n_O; XAuto. (* case 2.2 : y > 0 *) Cut (lt n0 n); XAuto. Qed. Theorem lt_plus_minus: (x,y:?) (lt x y) -> y = (S (plus x (minus y (S x)))). Intros. Apply (le_plus_minus (S x) y); XAuto. Qed. Theorem lt_plus_minus_r: (x,y:?) (lt x y) -> y = (S (plus (minus y (S x)) x)). Intros. Rewrite plus_sym; Apply lt_plus_minus; XAuto. Qed. Theorem minus_x_SO: (x:?) (lt (0) x) -> x = (S (minus x (1))). Intros. Rewrite <- minus_x_Sy; [ Rewrite <- minus_n_O; XEAuto | XEAuto ]. Qed. Theorem lt_le_minus: (x,y:?) (lt x y) -> (le x (minus y (1))). Intros; Apply le_minus; Rewrite plus_sym; Simpl; XAuto. Qed. Theorem lt_le_e: (n,d:?; P:Prop) ((lt n d) -> P) -> ((le d n) -> P) -> P. Intros. Cut (le d n) \/ (lt n d); [ Intros H1; XElim H1; XAuto | Apply le_or_lt ]. Qed. Theorem lt_eq_e: (x,y:?; P:Prop) ((lt x y) -> P) -> (x = y -> P) -> (le x y) -> P. Intros. LApply (le_lt_or_eq x y); [ Clear H1; Intros H1 | XAuto ]. XElim H1; XAuto. Qed. Theorem lt_eq_gt_e: (x,y:?; P:Prop) ((lt x y) -> P) -> (x = y -> P) -> ((lt y x) -> P) -> P. Intros. Apply (lt_le_e x y); [ XAuto | Intros ]. Apply (lt_eq_e y x); XAuto. Qed. Theorem lt_gen_S': (x,n:?) (lt x (S n)) -> x = (0) \/ (EX m | x = (S m) & (lt m n)). XElim x; XEAuto. Qed. Hints Resolve le_lt_trans : ltlc. Hints Resolve simpl_plus_r minus_plus_r minus_x_Sy plus_permute_2_in_3 plus_permute_2_in_3_assoc : ltlc. Hints Resolve le_minus_minus le_minus_plus le_minus le_trans_plus_r : ltlc. Hints Resolve lt_x_plus_x_Sy simpl_lt_plus_r lt_le_minus lt_plus_minus lt_plus_minus_r : ltlc. Theorem lt_neq: (x,y:?) (lt x y) -> ~x=y. Unfold not; Intros; Rewrite H0 in H; Clear H0 x. LApply (lt_n_n y); XAuto. Qed. Hints Resolve lt_neq : ltlc. Theorem arith0: (h2,d2,n:?) (le (plus d2 h2) n) -> (h1:?) (le (plus d2 h1) (minus (plus n h1) h2)). Intros. Rewrite <- (minus_plus h2 (plus d2 h1)). Apply le_minus_minus; [ XAuto | Idtac ]. Rewrite plus_assoc_l; Rewrite (plus_sym h2 d2); XAuto. Qed. Hints Resolve arith0 : ltlc. Tactic Definition EqFalse := Match Context With [ H: ~?1=?1 |- ? ] -> LApply H; [ Clear H; Intros H; Inversion H | XAuto ]. Tactic Definition PlusO := Match Context With | [ H: (plus ?0 ?1) = (0) |- ? ] -> LApply (plus_O ?0 ?1); [ Clear H; Intros H | XAuto ]; XElim H; Intros. Tactic Definition SymEqual := Match Context With | [ H: ?1 = ?2 |- ? ] -> Cut ?2 = ?1; [ Clear H; Intros H | Apply sym_equal; XAuto ]. Tactic Definition LeLtGen := Match Context With | [ H: (le (S ?1) ?2) |- ? ] -> LApply (le_gen_S ?1 ?2); [ Clear H; Intros H | XAuto ]; XElim H; Intros | [ H: (lt ?1 (S ?2)) |- ? ] -> LApply (lt_gen_S' ?1 ?2); [ Clear H; Intros H | XAuto ]; XElim H; [ Intros | Intros H; XElim H; Intros ].